
Prof. Girardi Ch 3: Methods of Proofs

§3.1: Direct Proofs

I. Section 3.1 (Direct Proofs) is a reinforcement of Section 1.2 (Constructing Direct Proof).

§1.2 introduced direct proof using the concepts of even and odd integers.

§3.1 reinforces direct proofs by using concepts (probably know from high school) other than just even/odd.

Def. A nonzero integer n divides an integer b, denoted n|b, provided that (∃k ∈ Z) [nk = b]. p82

Rmk. The integer 0 does not divide any integer.

Defs. Let n ∈ Z \ {0} and b ∈ Z. Then the following are equivalent (i.e.,
::::::
TFAE).

◦ n|b
◦ n divides b

◦ n is a divisor of b

◦ n is a factor of b ◦ b is a multiple of n

Do NOT express n|b as b
n

. Why? p82

Thm. Let a, b, and c be integers with a 6= 0 and b 6= 0. If a|b and b|c, then a|c. I.e., “divides” is transitive. Thm3.1

p88

F. At end of §3.1’s summary, see: Recall some Definitions used in ER’s. 〈prime, composite, irrational 〉

Division Algorithm (DA) Revisited

Recall. Thm. DA. For all n ∈ N and a ∈ Z, there exist unique integers q and r s.t. §3.5
p143

a = nq + r and 0 ≤ r < n . (1)

We says: “when we divide the integer a by the natural number n, the quotient is q and the remainder is r.”

Rmk. The equality in (1) can be written as a
n

= q + r
n
〈but we do

::
not write like this in our proofs 〉. §3.5

p144

.. DA symbolically: (∀n ∈ N) (∀a ∈ Z) (∃!q ∈ Z) (∃!r ∈ Z) [ a = nq + r ∧ 0 ≤ r < n ].

???. What happens in the DA if instead of starting the remainder r at s = 0 we start r at some other s ∈ Z?

Cor. Thm. DA+. Fix s ∈ Z. For all n ∈ N and a ∈ Z, there exist unique integers qs and rs s.t. not in

book

a = nqs + rs and s ≤ rs < s + n . (2)

.. DA+ symbolically: (∀n ∈ N) (∀a ∈ Z) (∀s ∈ Z) (∃!qs ∈ Z) (∃!rs ∈ Z) [ a = nqs + rs ∧ s ≤ rs < s + n ].

Lemma. Lemma DA+ uniqueness part. Let s ∈ Z. 〈s is the starting number for the remainder in DA+. 〉 not in

bookLet n ∈ N and q1, q2, r1, r2 ∈ Z such that nq1+r1 = nq2+r2 with s ≤ r1 < s+n and s ≤ r2 < s+n.

Then q1 = q2 and r1 = r2.

why?. Let the given hold. 〈We WTS q1 = q2 and r1 = r2. So it is EnufTS: q1 − q2 = 0 and r2 − r1 = 0. 〉
〈What can we say about r2 − r1? 〉 Since s ≤ r2 < s+ n and −s− n < −r1 ≤ −s we get

− n < r2 − r1 < n. (3)

〈What can we say about q1 − q2? 〉 Since nq1 + r1 = nq2 + r2 we get

n(q1 − q2) = r2 − r1. (4)

Combining (3) and (4) gives
−n < n(q1 − q2) < n.

Since n 6= 0 〈 so can divide thru by n 〉 we get −1 < q1 − q2 < 1. Since q1 − q2 ∈ Z and −1 < q1 − q2 < 1, we

get q1 − q2 = 0. So r2 − r1
by
=
(4)

n(q1 − q2)
know
=

q1−q2=0
n(0) = 0.
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Divides and Congruent

Def. A nonzero integer n divides an integer b, denoted n|b, provided that (∃k ∈ Z) [nk = b]. p82

Def. Let n ∈ N and a, b ∈ Z. p92

Then a is congruent to b modulo n, denoted a ≡ b (mod n), provided n divides a− b.

Rmk. Let n ∈ N and a, b ∈ Z. The following are equivalent (TFAE).

(1) a is congruent to b modulo n

(2) a ≡ b (mod n)
(3) n divides a− b, i.e., n|(a− b)

(4) (∃k ∈ Z) [a− b = nk]
to see (4)⇔(4′)⇐⇒

take j=−k
(5) (∃k ∈ Z) [a = nk + b]

(1′) b is congruent to a modulo n

(2′) b ≡ a (mod n)
(3′) n divides b− a, i.e., n|(b− a)

(4′) (∃j ∈ Z) [b− a = nj]
(5′) (∃j ∈ Z) [b = nj + a]

Note (1)
notation⇐====⇒ (2)

def. of⇐=====⇒
congruence

(3)
def. of⇐===⇒
divides

(4)
algebra⇐===⇒ (5). Similiarly, (1′) ⇔ (2′) ⇔ (3′) ⇔ (4′) ⇔ (5′).

.. As def. of a ≡ b (mod n) we can use (unless otherwise indicated) any of the above equivalent formations: (3), (4), (5), (3′), (4′), (5′).

Thm. Let n ∈ N and a, b, c ∈ Z ER 11

p98
(1) a ≡ a (mod n) (reflexive)
(2) If a ≡ b (mod n), then b ≡ a (mod n). (symmetric)
(3) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n). (transitive)

Thm. Thm. 3.30. Congruence modulo n is an
:::::::::::::
equivalence relation. p148

Def. Congruent is a relation means that a ≡ b (mod n) is either true or false, but not both.
The adjective equivalence means the relation is: reflexive, symmetric, and transitive. < rst>

Thm. Modulo Arithmetic. Let n ∈ N and a1, a2, b1, b2 ∈ Z. ER 12

p98Let the congruences in (5) and (6) hold.

a1 ≡ a2 (mod n) (5)

b1 ≡ b2 (mod n) (6)

Then the congruences in (7) and (8) hold.

a1 + b1 ≡ a2 + b2 (mod n) (7)

a1b1 ≡ a2b2 (mod n) (8)

F. ER 3.5.5a. Fix n ∈ N and a ∈ Z. Then a ≡ 0 (mod n) if and only if n|a . p153

why?. Note: a ≡ 0 (mod n)
def.⇐=====⇒

mod congr.
n| (a− 0)

algrebra⇐===⇒ n|a.

Thm. Thm. 3.31+. Let n ∈ N and a ∈ Z and r ∈ Z. 〈 think DA+ 〉 p150

Then a = nq + r for some q ∈ Z if and only if a ≡ r (mod n).

why?. (∃q ∈ Z) [a = nq + r]
algebra⇐===⇒ (∃q ∈ Z) [a− r = nq]

def.⇐==⇒
divides

n| (a− r)
def.⇐=====⇒

mod congr.
a ≡ r (mod n) .

Rmk. So a ∈ Z is congruent modulo n to the
::::::::::
remainder obtained when a is divided by n ∈ N in DA.

Cor. Cor. 3.32. Let n ∈ N and a ∈ Z. Then there exists a
:::::::
unique r ∈ Z such that p150

a ≡ r (mod n) and 0 ≤ r < n .

Cor. Cor 3.32+. Fix s ∈ Z. Let n ∈ N and a ∈ Z. Then there exists a
:::::::
unique r ∈ Z such that not in

book
a ≡ r (mod n) and s ≤ r < s + n .

why?. Fix s ∈ Z (for Cor. 3.32 take s = 0). Let n ∈ N and a ∈ Z. First apply Thm. DA+ to express a = nq + r

for a unique q ∈ Z and unique r ∈ Z with s ≤ r < s+ n. Then use Thm. 3.31+.
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Recall some Definitions
used in ER’s

Def. A p ∈ N is prime provided p 6= 1 and the only natural numbers that are factors of p are: 1 and p. p78

Def. A c ∈ N is composite provided c 6= 1 and c is not a prime number. p78

.. The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a
::::
unit.

So. A p ∈ N is a prime number provided (p 6= 1) ∧ (∀d ∈ N) [ d|p⇒ (d = 1 ∨ d = p) ]
A c ∈ N is a composite number provided (c 6= 1) ∧ (c is not a prime number).

Def. A real number x is a rational number provided that (∃ (a, b) ∈ Z2)
[
x = a

b
∧ b 6= 0

]
. p122

, or equivalently, provided that (∃ (a, b) ∈ Z× N)
[
x = a

b

]
.

A real number that is not a rational number is called an irrational number.

Rmk. The rational numbers are denoted by Q. Thus the irrational numbers are R \Q.

§3.2 More Methods of Proofs

I. More (other than direct) methods of proof:

:::::::::::::::
contrapositive,

::::::::::::::
biconditional,

:::::
other

::::::::
logical

::::::::::::
equivalency,

:::::::::::::::::::::::::::::
constructive/nonconstructive

::::::::
proofs .

Often, these new methods reduces the problem down to a direct proof (or to several direct proofs).

Def. A constructive proof is a proof where we construct the desired object we want to show exists. p88

E.g. Theorem. There exists a real number x such that x2 − 9 = 0.
Proof. Let x = 3. Then x ∈ R and x2− 9 = 32− 9 = 0. When have just 〈constructively 〉 proved that
there exists a real number x such that x2 − 9 = 0. �

I. The below facts are used often in the homework problems.

◦. Thm 3.10. (∀n ∈ Z) [ n is even ⇔ n2 is even ]. p108

◦. Cor 3.10. (∀n ∈ Z) [ n is odd ⇔ n2 is odd ]. not in

book
◦. ER 3.2.1c. (∀n ∈ Z) [ n is even ⇔ n3 is even ]. p112

◦. ER 3.2.1d. (∀n ∈ Z) [ n is odd ⇔ n3 is odd ]. p112

§3.3 Proof by Contradiction

I. To proof Thm. 1 〈 is true 〉 by contradiction ,
:::::::
assume that Thm. 1 is

::::
false. Then logically argue that

the assumption 〈 that Thm. 1 is false 〉 leads to a contradction (e.g. 0 = 1). Thus Thm. 1 must be true.

F. See this summary’s Section on Prime Factorization.

§3.4 Using Cases in Proofs

I. A proof by cases (also called proof by exhaustion) is a proof consisting of examining
::::::
every possible case.

Rmk. Often, proof by cases is not the first choice of proof method.

Rmk. Natural concepts that lead to r a
::::::
proof

:::
by

::::::
cases are: DA, DA+, and Modulo Congrence 〈even PR 〉.

E.g., Cor. 3.32+ can be used set up a proof by cases. The n ∈ N and a ∈ Z are given in the theorem’s statement.

Pick s ∈ Z 〈pick s to make the arithmetic easy 〉. Then the integer a is congruent modulo n to precisely
:::
one of the

integer in the set {s, s+1, s+2, . . . , s+n− 1}, which contains n elements. So we can consider these n cases for a.

§3.5 Division Algorithm/Congruence

Thm. Thm. 3.28. Let n ∈ N and a1, a2, b1, b2 ∈ Z. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then p147

(1) (a1 + b1) ≡ (a2 + b2) (mod n)
(2) (a1 · b1) ≡ (a2 · b2) (mod n)
(3) (a1)

m ≡ (a2)
m (mod n) for each m ∈ N.
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Prime Factorization (PF)

Note. Since 75 factors as 75 = (3) (25) = (3) (52), the
::::::
prime

:::::::::::::
factorization of 75 is: 75 = (31) (52).

Each n ∈ N \ {1} has a unique prime factorization.

Thm. Prime Factorization (Fundamental Theorem of Arithmetic) Thm8.15
p432

p427For each n ∈ N \ {1} there exists
:::::::
unique

(1) m ∈ N 〈m is the number of primes in the prime factorization of n 〉

(2) prime numbers p1, p2, . . . , pm

(3) natural numbers k1, k2, . . . , km

such that

n =
m∏
i=1

(pi)
ki

and p1 < p2 < . . . < pm−1 < pm. (We often say: the prime factorization of n is “unique up to ordering”)

.. Corollaries to Prime Factorization Theorem:

Cor 1. In the prime factorization of n ∈ N>1, the total numbers of factors of a prime is a nonnegative integer.

why?. Let q be a prime and consider the prime factorization n =
∏m

i=1 (pi)
ki .

If q is one of the pi’s, then the PF of n has ki ∈ N factors of q.

If q is not one of the pi’s, then the PF of n has 0 factors of q.

Cor 2. Let n ∈ N\{1} have a prime factorization n =
m∏
i=1

(pi)
ki

where each pi is a prime number and each ki ∈ N. Then

(1) n is even if and only if 2 ∈ {p1, . . . , pm}

(2) n is odd if and only if 2 6∈ {p1, . . . , pm}.

why?. Note: n even
def.⇐=⇒
even

(∃k ∈ Z)[n = 2k]
def.⇐==⇒

factor
2 is a factor of n

PF⇐=⇒
of N

2 ∈ {p1, . . . , pm}.
Note: (2) follows from (1) by contrapostive (twice). [R⇔ S] ≡ [∼ R⇔∼ S]

Cor 3. Let n ∈ N and p be a prime number. If the total number of factors of p in n is k ∈ Z≥0,

then the total number of factors of p in n2 is 2k ∈ Z≥0.

Thus the total number of factors of a prime in the square of a natural number is a even integer.

why?. Let p be prime.
First: let n ∈ N>1. For n and n2, consider their prime factorizations:

n =

m∏
i=1

(pi)
ki algebra⇐===⇒ n2 =

m∏
i=1

(pi)
2ki .

So if p = pi for some i, then n has ki factors of pi while n2 has 2ki factors of pi.

And if p is not one of the pi’s then both n and n2 have 0 factors of p 〈and 0 = 2 (0) 〉.
Second: let n = 1. Then n2 = 1 so both n and n2 have 0 factors of p.
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