§3．1：Direct Proofs

－Section 3.1 （Direct Proofs）is a reinforcement of Section 1.2 （Constructing Direct Proof）．
§1．2 introduced direct proof using the concepts of even and odd integers．
$\S 3.1$ reinforces direct proofs by using concepts（probably know from high school）other than just even／odd．
Def．A nonzero integer n divides an integer b ，denoted $n \mid b$ ，provided that $(\exists k \in \mathbb{Z})[n k=b]$ ．
rmk．The integer 0 does not divide any integer．
Defs．Let $n \in \mathbb{Z} \backslash\{0\}$ and $b \in \mathbb{Z}$ ．Then the following are equivalent（i．e．，TFAE）．
－$n \mid b$
－n divides b
－n is a divisor of b
$\circ n$ is a factor of $b \quad \circ b$ is a multiple of n
Do NOT express $n \mid b$ as $\frac{b}{n}$ ．Why？
Thm．Let a, b ，and c be integers with $a \neq 0$ and $b \neq 0$ ．If $a \mid b$ and $b \mid c$ ，then $a \mid c$ ．I．e．，＂divides＂is transitive．
p82 Then $q_{1}=q_{2}$ and $r_{1}=r_{2}$ ．
why？．Let the given hold．〈We WTS $q_{1}=q_{2}$ and $r_{1}=r_{2}$ ．So it is $\mathrm{E}_{\text {nuf }} \mathrm{TS}$ ：$q_{1}-q_{2}=0$ and $r_{2}-r_{1}=0$ ．〉
〈What can we say about $r_{2}-r_{1}$ ？〉 Since $s \leq r_{2}<s+n$ and $-s-n<-r_{1} \leq-s$ we get

$$
\begin{equation*}
-n<r_{2}-r_{1}<n \tag{3}
\end{equation*}
$$

〈 What can we say about $q_{1}-q_{2}$ ？〉 Since $n q_{1}+r_{1}=n q_{2}+r_{2}$ we get

$$
\begin{equation*}
n\left(q_{1}-q_{2}\right)=r_{2}-r_{1} . \tag{4}
\end{equation*}
$$

Combining（3）and（4）gives

$$
-n<n\left(q_{1}-q_{2}\right)<n .
$$

Since $n \neq 0$ 〈so can divide thru by $n\rangle$ we get $-1<q_{1}-q_{2}<1$ ．Since $q_{1}-q_{2} \in \mathbb{Z}$ and $-1<q_{1}-q_{2}<1$ ，we get $q_{1}-q_{2}=0$ ．So $r_{2}-r_{1} \underset{(4)}{\stackrel{\text { by }}{=}} n\left(q_{1}-q_{2}\right) \stackrel{\text { know }}{\overline{-}} q_{1}=q_{2}=0,0$ ．

Def. A nonzero integer n divides an integer b, denoted $n \mid b$, provided that $(\exists k \in \mathbb{Z})[n k=b]$.
Def. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.
Then a is congruent to b modulo n, denoted $a \equiv b(\bmod n)$, provided n divides $a-b$.
Rmk. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. The following are equivalent (TFAE).
(1) a is congruent to b modulo n
(2) $a \equiv b(\bmod n)$

$$
\begin{array}{ll}
& \left(1^{\prime}\right) b \text { is congruent to } a \text { modulo } n \\
& \left(2^{\prime}\right) b \equiv a(\bmod \mathrm{n}) \\
& \left(3^{\prime}\right) n \text { divides } b-a \text {, i.e., } n \mid(b-a) \\
\text { to see }(4) \Leftrightarrow\left(4^{\prime}\right) \\
\text { take } j=-k_{\rightleftarrows}^{\left(4^{\prime}\right)(\exists j \in \mathbb{Z})[b-a=n j]} \\
\left(5^{\prime}\right)(\exists j \in \mathbb{Z})[b=n j+a]
\end{array}
$$

(3) n divides $a-b$, i.e., $n \mid(a-b)$
(4) $(\exists k \in \mathbb{Z})[a-b=n k]$
(5) $(\exists k \in \mathbb{Z})[a=n k+b]$

Note $(1) \stackrel{\text { notation }}{\Longleftrightarrow}(2) \underset{\text { congruence }}{\text { def. of }}(3) \underset{\text { divides }}{\stackrel{\text { def. of }}{\Longrightarrow}}(4) \stackrel{\text { algebra }}{\Longleftrightarrow}(5)$. Similiarly, $\left(1^{\prime}\right) \Leftrightarrow\left(2^{\prime}\right) \Leftrightarrow\left(3^{\prime}\right) \Leftrightarrow\left(4^{\prime}\right) \Leftrightarrow\left(5^{\prime}\right)$.
. As def. of $a \equiv b(\bmod n)$ we can use (unless otherwise indicated) any of the above equivalent formations: (3), (4), (5), (3'), (4 $\left.4^{\prime}\right)$, (5^{\prime}).
Thm. Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$
(1) $a \equiv a(\bmod \mathrm{n})$
(reflexive)
(2) If $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
(symmetric)
(3) If $a \equiv b(\bmod \mathrm{n})$ and $b \equiv c(\bmod \mathrm{n})$, then $a \equiv c(\bmod \mathrm{n})$.
(transitive)
Thm. Thm. 3.30. Congruence modulo n is an equivalence relation.
Def. Congruent is a relation means that $a \equiv b(\bmod n)$ is either true or false, but not both.
The adjective equivalence means the relation is: reflexive, symmetric, and transitive. < rst>
Thm. Modulo Arithmetic. Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, b_{1}, b_{2} \in Z$.
Let the congruences in (5) and (6) hold.

$$
\begin{align*}
& a_{1} \equiv a_{2}(\bmod \mathrm{n}) \tag{5}\\
& b_{1} \equiv b_{2}(\bmod \mathrm{n}) \tag{6}
\end{align*}
$$

Then the congruences in (7) and (8) hold.

$$
\begin{array}{rlr}
a_{1}+b_{1} & \equiv a_{2}+b_{2} \quad(\bmod n) \\
a_{1} b_{1} & \equiv a_{2} b_{2} \quad(\bmod n) \tag{8}
\end{array}
$$

\star. ER 3.5.5a. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then $a \equiv 0(\bmod n)$ if and only if $n \mid a$.
ER 11

Then $\quad a=n q+r \quad$ for some $q \in \mathbb{Z}$ if and only if $a \equiv r(\bmod n)$.
why?. $\quad(\exists q \in \mathbb{Z})[a=n q+r] \stackrel{\text { algebra }}{\Longleftrightarrow}(\exists q \in \mathbb{Z})[a-r=n q] \underset{\text { divides }}{\stackrel{\text { def. }}{\Longrightarrow}} n \mid(a-r) \underset{\text { mod congr. }}{\stackrel{\text { def. }}{\Longrightarrow}} a \equiv r(\bmod n)$.
Rmk. So $a \in \mathbb{Z}$ is congruent modulo n to the remainder obtained when a is divided by $n \in \mathbb{N}$ in DA.
Cor. Cor. 3.32. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that

$$
a \equiv r \quad(\bmod n) \quad \text { and } \quad 0 \leq r<n
$$

Cor. Cor $\mathbf{3 . 3 2}^{+}$. Fix $s \in \mathbb{Z}$. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that

$$
a \equiv r \quad(\bmod n) \quad \text { and } \quad s \leq r<s+n
$$

why?. Fix $s \in \mathbb{Z}$ (for Cor. 3.32 take $s=0$). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. First apply Thm. DA ${ }^{+}$to express $a=n q+r$ for a unique $q \in \mathbb{Z}$ and unique $r \in \mathbb{Z}$ with $s \leq r<s+n$. Then use Thm. 3.31 .

Def．A $p \in \mathbb{N}$ is prime provided $p \neq 1$ and the only natural numbers that are factors of p are： 1 and p ．
Def．A $c \in \mathbb{N}$ is composite provided $c \neq 1$ and c is not a prime number．
■．The number 1 is neither prime nor composite．In Math 546 you will learn 1 is a unit．
So．A $p \in \mathbb{N}$ is a prime number provided $\quad(p \neq 1) \wedge(\forall d \in \mathbb{N})[d \mid p \Rightarrow(d=1 \vee d=p)]$ A $c \in \mathbb{N}$ is a composite number provided $(c \neq 1) \wedge(c$ is not a prime number $)$ ．
Def．A real number x is a rational number provided that $\left(\exists(a, b) \in \mathbb{Z}^{2}\right)\left[x=\frac{a}{b} \wedge b \neq 0\right]$ ．
A real number that is not a rational number is called an irrational number．
Rmk．The rational numbers are denoted by \mathbb{Q} ．Thus the irrational numbers are $\mathbb{R} \backslash \mathbb{Q}$ ．

$$
\S 3.2 \text { More Methods of Proofs }
$$

－More（other than direct）methods of proof：
contrapositive，biconditional，other logical equivalency，constructive／nonconstructive proofs．
Often，these new methods reduces the problem down to a direct proof（or to several direct proofs）．
Def．A constructive proof is a proof where we construct the desired object we want to show exists．
E．g．Theorem．There exists a real number x such that $x^{2}-9=0$ ．
Proof．Let $x=3$ ．Then $x \in \mathbb{R}$ and $x^{2}-9=3^{2}-9=0$ ．When have just 〈constructively〉 proved that there exists a real number x such that $x^{2}-9=0$ ．
－The below facts are used often in the homework problems．
○．Thm 3．10．$(\forall n \in \mathbb{Z})$［ n is even $\Leftrightarrow n^{2}$ is even ］．
○．Cor 3．10．$(\forall n \in \mathbb{Z})\left[n\right.$ is odd $\Leftrightarrow n^{2}$ is odd $]$ ．
०．ER 3．2．1c．$(\forall n \in \mathbb{Z})$［ n is even $\Leftrightarrow n^{3}$ is even $]$ ．
○．ER 3．2．1d．$(\forall n \in \mathbb{Z})$［ n is odd $\Leftrightarrow n^{3}$ is odd ］．

§3．3 Proof by Contradiction

－．To proof Thm． 1 〈is true〉 by contradiction，assume that Thm． 1 is false．Then logically argue that the assumption 〈that Thm． 1 is false〉 leads to a contradction（e．g． $0=1$ ）．Thus Thm． 1 must be true．
＊．See this summary＇s Section on Prime Factorization．

§3．4 Using Cases in Proofs

－A proof by cases（also called proof by exhaustion）is a proof consisting of examining every possible case．
Rmk．Often，proof by cases is not the first choice of proof method．
Rmk．Natural concepts that lead to r a proof by cases are：DA， DA^{+}，and Modulo Congrence \langleeven PR \rangle． E．g．，Cor． 3.32^{+}can be used set up a proof by cases．The $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ are given in the theorem＇s statement． Pick $s \in \mathbb{Z}\langle$ pick s to make the arithmetic easy〉．Then the integer a is congruent modulo n to precisely one of the integer in the set $\{s, s+1, s+2, \ldots, s+n-1\}$ ，which contains n elements．So we can consider these n cases for a ．

§3．5 Division Algorithm／Congruence

Thm．Thm．3．28．Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ ．If $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2}(\bmod n)$ ，then
（1）$\left(a_{1}+b_{1}\right) \equiv\left(a_{2}+b_{2}\right)(\bmod n)$
（2）$\left(a_{1} \cdot b_{1}\right) \equiv\left(a_{2} \cdot b_{2}\right) \quad(\bmod n)$
（3）$\left(a_{1}\right)^{m} \equiv\left(a_{2}\right)^{m} \quad(\bmod n)$ for each $m \in \mathbb{N}$ ．

Note. Since 75 factors as $75=(3)(25)=(3)\left(5^{2}\right)$, the prime factorization of 75 is: $75=\left(3^{1}\right)\left(5^{2}\right)$.
Each $n \in \mathbb{N} \backslash\{1\}$ has a unique prime factorization.
Thm. Prime Factorization (Fundamental Theorem of Arithmetic)
For each $n \in \mathbb{N} \backslash\{1\}$ there exists unique
(1) $m \in \mathbb{N} \quad\langle m$ is the number of primes in the prime factorization of $n\rangle$
(2) prime numbers $p_{1}, p_{2}, \ldots, p_{m}$
(3) natural numbers $k_{1}, k_{2}, \ldots, k_{m}$
such that

$$
n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}}
$$

and $p_{1}<p_{2}<\ldots<p_{m-1}<p_{m}$. (We often say: the prime factorization of n is "unique up to ordering")
■. Corollaries to Prime Factorization Theorem:
Cor 1 . In the prime factorization of $n \in \mathbb{N}^{>1}$, the total numbers of factors of a prime is a nonnegative integer.
why?. Let q be a prime and consider the prime factorization $n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}}$.
If q is one of the p_{i} 's, then the PF of n has $k_{i} \in \mathbb{N}$ factors of q.
If q is not one of the p_{i} 's, then the PF of n has 0 factors of q.
Cor 2. Let $n \in \mathbb{N} \backslash\{1\}$ have a prime factorization $n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}}$ where each p_{i} is a prime number and each $k_{i} \in \mathbb{N}$. Then
(1) n is even if and only if $2 \in\left\{p_{1}, \ldots, p_{m}\right\}$
(2) n is odd if and only if $2 \notin\left\{p_{1}, \ldots, p_{m}\right\}$.
why?. Note: n even $\underset{\text { even }}{\text { def. }}(\exists k \in \mathbb{Z})[n=2 k] \underset{\text { factor }}{\stackrel{\text { def. }}{\Longrightarrow}} 2$ is a factor of $n \underset{\text { of } N}{\stackrel{\mathrm{PF}}{\Rightarrow}} 2 \in\left\{p_{1}, \ldots, p_{m}\right\}$.
Note: (2) follows from (1) by contrapostive (twice). $\quad[R \Leftrightarrow S] \equiv[\sim R \Leftrightarrow \sim S]$
Cor 3. Let $n \in \mathbb{N}$ and p be a prime number. If the total number of factors of p in n is $k \in \mathbb{Z}^{\geq 0}$,

$$
\text { then the total number of factors of } p \text { in } n^{2} \text { is } 2 k \in \mathbb{Z}^{\geq 0} \text {. }
$$

Thus the total number of factors of a prime in the square of a natural number is a even integer.
why?. Let p be prime.
First: let $n \in \mathbb{N}^{>1}$. For n and n^{2}, consider their prime factorizations:

$$
n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}} \stackrel{\text { algebra }}{\Longleftrightarrow} n^{2}=\prod_{i=1}^{m}\left(p_{i}\right)^{2 k_{i}} .
$$

So if $p=p_{i}$ for some i, then n has k_{i} factors of p_{i} while n^{2} has $2 k_{i}$ factors of p_{i}.
And if p is not one of the p_{i} 's then both n and n^{2} have 0 factors of $p\langle$ and $0=2(0)\rangle$.
Second: let $n=1$. Then $n^{2}=1$ so both n and n^{2} have 0 factors of p.

