§3.1: Direct Proofs

Section 3.1 (Direct Proofs) is a reinforcement of Section 1.2 (Constructing Direct Proof).

§1.2 introduced direct proof using the concepts of even and odd integers.

 $\S3.1$ reinforces direct proofs by using concepts (probably know from high school) other than just even/odd. A nonzero integer n divides an integer b, denoted n|b, provided that $(\exists k \in \mathbb{Z}) [nk = b]$. Def. p82 The integer 0 does not divide any integer. Rmk Let $n \in \mathbb{Z} \setminus \{0\}$ and $b \in \mathbb{Z}$. Then the following are equivalent (i.e., TFAE). Defs. $\circ n|b$ $\circ n$ divides b \circ *n* is a **divisor** of *b* $\circ n$ is a **factor** of b $\circ b$ is a **multiple** of nDo NOT express n|b| as $\frac{b}{n}$. Why? p82 Let a, b, and c be integers with $a \neq 0$ and $b \neq 0$. If a|b and b|c, then a|c. I.e., "divides" is transitive. Thm. Thm3.1 p88 At end of §3.1's summary, see: Recall some Definitions used in ER's. (prime, composite, irrational) ★. Division Algorithm (**DA**) Revisited **Recall.** Thm. DA. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q and r s.t. $\S{3.5}$ p143 $0 \le r < n$. a = nq + rand (1)We says: "when we divide the integer a by the natural number n, the **quotient** is q and the **remainder** is r." The equality in (1) can be written as $\frac{a}{n} = q + \frac{r}{n}$ (but we do not write like this in our proofs). Rmk. §3.5p144 $(\forall n \in \mathbb{N}) \ (\forall a \in \mathbb{Z}) \ (\exists ! q \in \mathbb{Z}) \ (\exists ! r \in \mathbb{Z}) \ [a = nq + r \land 0 \le r < n].$ DA symbolically: ⊳. What happens in the DA if instead of starting the remainder r at s = 0 we start r at some other $s \in \mathbb{Z}$? ???. **Thm.** DA⁺. Fix $s \in \mathbb{Z}$. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q_s and r_s s.t. Cor. not in book $a = nq_s + r_s$ and $s < r_s < s + n$. (2) $(\forall n \in \mathbb{N}) (\forall a \in \mathbb{Z}) (\forall s \in \mathbb{Z}) (\exists ! q_s \in \mathbb{Z}) (\exists ! r_s \in \mathbb{Z}) [a = nq_s + r_s \land s < r_s < s + n].$ ⊳. DA⁺ symbolically: Lemma. Lemma DA⁺ uniqueness part. Let $s \in \mathbb{Z}$. (s is the starting number for the remainder in DA⁺.) not in book Let $n \in \mathbb{N}$ and $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ such that $nq_1 + r_1 = nq_2 + r_2$ with $s \leq r_1 < s + n$ and $s \leq r_2 < s + n$. Then $q_1 = q_2$ and $r_1 = r_2$. Let the given hold. (We WTS $q_1 = q_2$ and $r_1 = r_2$. So it is $E_{nuf}TS: q_1 - q_2 = 0$ and $r_2 - r_1 = 0$.) why?. (What can we say about $r_2 - r_1$?) Since $s \le r_2 < s + n$ and $-s - n < -r_1 \le -s$ we get $-n < r_2 - r_1 < n.$ (3)(What can we say about $q_1 - q_2$?) Since $nq_1 + r_1 = nq_2 + r_2$ we get $n(q_1 - q_2) = r_2 - r_1.$ (4)Combining (3) and (4) gives $-n < n(q_1 - q_2) < n.$ Since $n \neq 0$ (so can divide thru by n) we get $-1 < q_1 - q_2 < 1$. Since $q_1 - q_2 \in \mathbb{Z}$ and $-1 < q_1 - q_2 < 1$, we get $q_1 - q_2 = 0$. So $r_2 - r_1 \stackrel{\text{by}}{=} n(q_1 - q_2) \stackrel{\text{know}}{=} n(0) = 0$. 230811 Page 1 of 4 Mathematical Reasoning by Sundstrom, Version 3

Thm.

Divides and Congruent

- **Def.** A nonzero integer *n* divides an integer *b*, denoted n|b, provided that $(\exists k \in \mathbb{Z}) [nk = b]$.
- Def. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.

Then a is congruent to b modulo n, denoted $a \equiv b \pmod{n}$, provided n divides a - b.

Rmk. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. The following are equivalent (TFAE).

(1) a is congruent to b modulo n (2) $a \equiv b \pmod{n}$ (3) $n \operatorname{divides} a - b, \text{ i.e., } n | (a - b)$ (4) $(\exists k \in \mathbb{Z}) [a - b = nk]$ (5) $(\exists k \in \mathbb{Z}) [a = nk + b]$ (1) $b \equiv \operatorname{congruent} \text{ to a modulo } n$ (2) $b \equiv a \pmod{n}$ (3) $n \operatorname{divides} b - a, \text{ i.e., } n | (b - a)$ (4) $(\exists j \in \mathbb{Z}) [b - a = nj]$ (5) $(\exists k \in \mathbb{Z}) [a = nk + b]$ (6) $(\exists j \in \mathbb{Z}) [b = nj + a]$

Note (1) $\xleftarrow{\text{notation}}(2) \xleftarrow{\text{def. of}}(3) \xleftarrow{\text{def. of}}(4) \xleftarrow{\text{algebra}}(5)$. Similarly, (1') \Leftrightarrow (2') \Leftrightarrow (3') \Leftrightarrow (4') \Leftrightarrow (5').

 $\triangleright. \qquad \text{As def. of } a \equiv b \pmod{n} \text{ we can use (unless otherwise indicated) any of the above equivalent formations: (3), (4), (5), (3'), (4'), (5').}$

- Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$ (1) $a \equiv a \pmod{n}$ (reflexive)
 - (2) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$. (symmetric) (2) If $a \equiv b \pmod{n}$ and $b \equiv a \pmod{n}$, then $a \equiv a \pmod{n}$.
 - (3) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. (transitive)
- Thm. Thm. 3.30. Congruence modulo n is an equivalence relation.

Def. Congruent is a **relation** means that $a \equiv b \pmod{n}$ is either true or false, but not both. The adjective **equivalence** means the relation is: reflexive, symmetric, and transitive. $\langle rst \rangle$

Thm. Modulo Arithmetic. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let the congruences in (5) and (6) hold.

$$a_1 \equiv a_2 \pmod{\mathbf{n}} \tag{5}$$

$$b_1 \equiv b_2 \pmod{\mathbf{n}} \tag{6}$$

Then the congruences in (7) and (8) hold.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{n} \tag{7}$$

$$a_1b_1 \equiv a_2b_2 \qquad (\text{mod } n) \tag{8}$$

★. ER 3.5.5a. Fix
$$n \in \mathbb{N}$$
 and $a \in \mathbb{Z}$. Then $a \equiv 0 \pmod{n}$ if and only if $n|a$. p153
why?. Note: $a \equiv 0 \pmod{n} \xleftarrow{\text{def.}}_{\text{mod coner.}} n|(a-0) \xleftarrow{\text{algrebra}}_{\text{mod coner.}} n|a$.

Thm. Thm. 3.31⁺. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ and $r \in \mathbb{Z}$. (think DA^+) Then a = nq + r for some $q \in \mathbb{Z}$ if and only if $a \equiv r \pmod{n}$.

$$\mathbf{why?.} \quad (\exists q \in \mathbb{Z}) \left[a = nq + r \right] \xrightarrow{\text{algebra}} (\exists q \in \mathbb{Z}) \left[a - r = nq \right] \xrightarrow{\text{def.}} n \left| (a - r) \xrightarrow{\text{def.}} a \equiv r \pmod{n} \right.$$

Rmk. So $a \in \mathbb{Z}$ is congruent modulo n to the remainder obtained when a is divided by $n \in \mathbb{N}$ in DA.

cor. Cor. 3.32. Let
$$n \in \mathbb{N}$$
 and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that
 $a \equiv r \pmod{n}$ and $0 \leq r < n$.

cor. Cor 3.32⁺. Fix $s \in \mathbb{Z}$. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that $a \equiv r \pmod{n}$ and $s \leq r < s + n$.

why?. Fix $s \in \mathbb{Z}$ (for Cor. 3.32 take s = 0). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. First apply Thm. DA⁺ to express a = nq + r for a unique $q \in \mathbb{Z}$ and unique $r \in \mathbb{Z}$ with $s \leq r < s + n$. Then use Thm. 3.31⁺.

p82 p92

p148

ER 11 p98

ER 12 p98

p150

p78

Recall some Definitions used in ER's

- A $p \in \mathbb{N}$ is **prime** provided $p \neq 1$ and the only natural numbers that are factors of p are: 1 and p. Def. p78
- A $c \in \mathbb{N}$ is **composite** provided $c \neq 1$ and c is not a prime number. Def.
- The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit. \triangleright .
- A $p \in \mathbb{N}$ is a **prime number** provided $(p \neq 1) \land (\forall d \in \mathbb{N}) [d|p \Rightarrow (d = 1 \lor d = p)]$ So. A $c \in \mathbb{N}$ is a **composite number** provided $(c \neq 1) \land (c \text{ is not a prime number}).$
- A real number x is a rational number provided that $(\exists (a, b) \in \mathbb{Z}^2) [x = \frac{a}{b} \land b \neq 0].$ Def. p122 , or equivalently, provided that $(\exists (a, b) \in \mathbb{Z} \times \mathbb{N}) [x = \frac{a}{b}].$

A real number that is not a rational number is called an irrational number.

The rational numbers are denoted by \mathbb{Q} . Thus the irrational numbers are $\mathbb{R} \setminus \mathbb{Q}$. Rmk.

§3.2 More Methods of Proofs

More (other than direct) methods of proof:

contrapositive, biconditional, other logical equivalency, constructive/nonconstructive proofs

Often, these new methods reduces the problem down to a direct proof (or to several direct proofs).

- A constructive proof is a proof where we construct the desired object we want to show exists. Def. p88 E.g. Theorem. There exists a real number x such that $x^2 - 9 = 0$. *Proof.* Let x = 3. Then $x \in \mathbb{R}$ and $x^2 - 9 = 3^2 - 9 = 0$. When have just (constructively) proved that there exists a real number x such that $x^2 - 9 = 0$.
- The below facts are used often in the homework problems.
- **Thm 3.10**. $(\forall n \in \mathbb{Z}) \mid n \text{ is even } \Leftrightarrow n^2 \text{ is even } \mid$. Ο. p108 **Cor 3.10**. $(\forall n \in \mathbb{Z}) [n \text{ is odd } \Leftrightarrow n^2 \text{ is odd }].$ ο. not in book **ER 3.2.1c**. $(\forall n \in \mathbb{Z}) [n \text{ is even } \Leftrightarrow n^3 \text{ is even }].$ ο. p112 p112
- **ER 3.2.1d**. $(\forall n \in \mathbb{Z})$ [*n* is odd \Leftrightarrow n^3 is odd]. ο.

§3.3 Proof by Contradiction

- To proof Thm. 1 (is true) by contradiction, assume that Thm. 1 is false. Then logically argue that ▶. the assumption (that Thm. 1 is false) leads to a contradiction (e.g. 0 = 1). Thus Thm. 1 must be true.
- See this summary's Section on Prime Factorization. ★.

§3.4 Using Cases in Proofs

A proof by cases (also called proof by exhaustion) is a proof consisting of examining every possible case.

- Often, proof by cases is not the first choice of proof method. Rmk
- Natural concepts that lead to r a proof by cases are: DA, DA⁺, and Modulo Congrence (even PR). Rmk. E.g., Cor. 3.32⁺ can be used set up a proof by cases. The $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ are given in the theorem's statement. Pick $s \in \mathbb{Z}$ (pick s to make the arithmetic easy). Then the integer a is congruent modulo n to precisely one of the integer in the set $\{s, s+1, s+2, \ldots, s+n-1\}$, which contains n elements. So we can consider these n cases for a.

§3.5 Division Algorithm/Congruence

Thm. 3.28. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. If $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then Thm. p147

- (1) $(a_1 + b_1) \equiv (a_2 + b_2) \pmod{n}$
- (2) $(a_1 \cdot b_1) \equiv (a_2 \cdot b_2) \pmod{n}$
- (3) $(a_1)^m \equiv (a_2)^m \pmod{n}$ for each $m \in \mathbb{N}$.

Prime Factorization (PF)

Note. Since 75 factors as $75 = (3) (25) = (3) (5^2)$, the prime factorization of 75 is: $75 = (3^1) (5^2)$. Each $n \in \mathbb{N} \setminus \{1\}$ has a unique prime factorization.

Thm. Prime Factorization (Fundamental Theorem of Arithmetic)

For each $n \in \mathbb{N} \setminus \{1\}$ there exists unique

- (1) $m \in \mathbb{N}$ $\langle m \text{ is the number of primes in the prime factorization of } n \rangle$
- (2) prime numbers p_1, p_2, \ldots, p_m
- (3) natural numbers k_1, k_2, \ldots, k_m

such that

$$n = \prod_{i=1}^{m} \left(p_i \right)^{k_i}$$

and $p_1 < p_2 < \ldots < p_{m-1} < p_m$. (We often say: the prime factorization of n is "unique up to ordering")

- ▷. Corollaries to Prime Factorization Theorem:
- **Cor 1.** In the prime factorization of $n \in \mathbb{N}^{>1}$, the total numbers of factors of a prime is a nonnegative integer.
- why?. Let q be a prime and consider the prime factorization $n = \prod_{i=1}^{m} (p_i)^{k_i}$. If q is one of the p_i 's, then the PF of n has $k_i \in \mathbb{N}$ factors of q. If q is not one of the p_i 's, then the PF of n has 0 factors of q.

cor 2. Let $n \in \mathbb{N} \setminus \{1\}$ have a prime factorization $n = \prod_{i=1}^{m} (p_i)^{k_i}$ where each p_i is a prime number and each $k_i \in \mathbb{N}$. Then (1) n is even if and only if $2 \in \{p_1, \ldots, p_m\}$

- (2) n is odd if and only if $2 \notin \{p_1, \ldots, p_m\}$.

why?. Note: $n \text{ even} \xleftarrow{\text{def.}}_{\text{even}} (\exists k \in \mathbb{Z}) [n = 2k] \xleftarrow{\text{def.}}_{\text{factor}} 2 \text{ is a factor of } n \xleftarrow{\text{PF}}_{\text{of } N} 2 \in \{p_1, \dots, p_m\}.$ Note: (2) follows from (1) by contrapositive (twice). $[R \Leftrightarrow S] \equiv [\sim R \Leftrightarrow \sim S]$

cor 3. Let $n \in \mathbb{N}$ and p be a prime number. If the total number of factors of p in n is $k \in \mathbb{Z}^{\geq 0}$,

then the total number of factors of p in n^2 is $2k \in \mathbb{Z}^{\geq 0}$.

Thus the total number of factors of a prime in the square of a natural number is a even integer.

why?. Let p be prime.

230811

First: let $n \in \mathbb{N}^{>1}$. For n and n^2 , consider their prime factorizations:

$$n = \prod_{i=1}^{m} (p_i)^{k_i} \quad \stackrel{\text{algebra}}{\longleftrightarrow} \quad n^2 = \prod_{i=1}^{m} (p_i)^{2k_i} \,.$$

So if $p = p_i$ for some *i*, then *n* has k_i factors of p_i while n^2 has $2k_i$ factors of p_i . And if *p* is not one of the p_i 's then both *n* and n^2 have 0 factors of $p \langle \text{and } 0 = 2 \rangle \rangle$. Second: let n = 1. Then $n^2 = 1$ so both *n* and n^2 have 0 factors of *p*. Thm8.15 p432 p427