§3.1: Direct Proofs

- Section 3.1 (Direct Proofs) is a reinforcement of Section 1.2 (Constructing Direct Proof). §1.2 introduced direct proof using the concepts of even and odd integers.
 - §3.1 reinforces direct proofs by using concepts (probably know from high school) other than just even/odd.

Some Math Terninology

- 1. A **proof** in mathematics is a convincing argument that some mathematical statement is true. §1.2 p22 $\langle Proof is a noun while prove is a verb.$ So we prove a true stament by providing a proof of the statement. \rangle
- 2. A **definition** is simply an agreement as to the meaning of a particular term. $\langle e.g., even integer \rangle$
- 3. There are undefined terms in math. <Simply put, we must start somewhere. E.g., in Euclidean Geometry: point&line.>
- **4**. An **axiom** is a mathematical statement that is accepted without proof.
- 5. A lemma is a true statement that was proven mainly to help in the proof of some theorem.
- 6. A theorem is a true mathematical statement for which we have a proof. (*Theorem* is abbreviated by Thm.)
- 7. A proposition is a *small theorem*. (this def. of proposition is more common than using prop. to mean statement)
- 8. A corollary is a (small) thm. that is easily proven once some other (bigger) thm. has been proven.
- 9. A conjecture is a statement that we believe is plausible (but we do not have a proof for it ... yet). <To show a conjecture is true, we prove the conjecture.

To show a conjecture is false, you can find a counterexample to the conjecture.>

A constructive proof is a proof where we use your givens to construct the desired object that pss Def. we want to show exists.

E.g. Theorem. There exists a real number x such that $x^2 - 9 = 0$.

Proof. Let x = 3. Then $x \in \mathbb{R}$ and $x^2 - 9 = 3^2 - 9 = 0$. When have just (constructively) proved that there exists a real number x such that $x^2 - 9 = 0$.

Definitions used in HW

- A natural number p is a **prime number** provided $p \neq 1$ and the only natural numbers that are p78 Def. factors of p are: 1 and p. A natural number c is a **composite number** provided $c \neq 1$ and c is not a prime number. (The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit.)
- A $p \in \mathbb{N}$ is a **prime number** provided $(p \neq 1) \land (\forall d \in \mathbb{N}) [d|p \Rightarrow (d = 1 \lor d = p)]$ So. A $c \in \mathbb{N}$ is a **composite number** provided $(c \neq 1) \land (c \text{ is not a prime number}).$ The number 1 is neither prime nor composite.

Division Algorithm (**DA**) Revisited

Lemma. Lemma DA. Fix $s \in \mathbb{Z}$. (s is the starting number for the ramainder. In DA, remainder $r \in \{0, 1, \dots, n-1\}$ so s = 0.) not in Let $n \in \mathbb{N}$ and $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ such that $nq_1 + r_1 = nq_2 + r_2$ with $s \leq r_1 < s + n$ and $s \leq r_2 < s + n$. book Then $q_1 = q_2$ and $r_1 = r_2$.

Why? Let the given hold. Note $-n < r_2 - r_1 < n$ since $s \le r_2 < s + n$ and $-s - n < -r_1 \le -s$. Since $nq_1 + r_1 = nq_2 + r_2$ get $n(q_1 - q_2) = r_2 - r_1$. So $-n < n(q_1 - q_2) < n$. Since $n \neq 0$ get $-1 < q_1 - q_2 < 1$. Since $q_1 - q_2 \in \mathbb{Z}$, get $q_1 - q_2 = 0$. So $q_1 = q_2$. Since $nq_1 + r_1 = nq_2 + r_2$ we get $r_1 = r_2$.

Thm. DA. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q and r so that Recall.

> a = nq + r and $0 \le r \le n$. (1)

Why? The existence part is beyond the scope of this class. For the uniqueness part, let $a = nq_1 + r_1$ and $a = nq_2 + r_2$ for some $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ with $0 \leq r_1 < n$ and $0 \leq r_2 < n$. Apply above Lemma DA (with s = 0) to get $q_1 = q_2$ and $r_1 = r_2$.

- DA symbolically: $(\forall n \in \mathbb{N})$ $(\forall a \in \mathbb{Z})$ $(\exists ! q \in \mathbb{Z})$ $(\exists ! r \in \mathbb{Z})$ $[a = nq + r \land 0 \leq r < n].$ ⊳.
- The equality in (1) can be thought of as $\frac{a}{n} = q + \frac{r}{n}$ (but we do not write like this in our proofs) and so we say: when we divide the *a* by *n*, the **quotient** is *q* and the **remainder** is *r*. Rmk. p144
- **Thm. DA**⁺. Fix $s \in \mathbb{Z}$. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q_s and r_s s.t. Cor.

$$a = nq_s + r_s$$
 and $s \le r_s < s + n$. (2)

Why? The existence part follows from Thm. DA. The uniqueness part follows from Lemma DA.

p85-86

p143

not in

Divides and Congruent

p82

(transitive)

p148

ER 12

p98

Def. A nonzero integer *n* divides an integer *b*, denoted n|b, provided that $(\exists k \in \mathbb{Z}) [nk = b]$.

Rmk. The integer 0 does not divide any integer. For $n \in \mathbb{Z} \setminus \{0\}$ and $b \in \mathbb{Z}$, TFAE.

 $\begin{array}{l} \circ \ n | b \\ \circ \ n \ {\bf divides} \ b \\ \circ \ n \ {\rm is \ a \ divisor \ of} \ b \\ \circ \ n \ {\rm is \ a \ factor \ of} \ b \\ \circ \ b \ {\rm is \ a \ multiple} \ {\rm of} \ n \end{array}$

Do NOT express n|b as $\frac{b}{n}$. Why?

Thm. Let a, b, and c be integers with $a \neq 0$ and $b \neq 0$. If a|b and b|c, then a|c. I.e., "divides" is transitive. Thm 3.1 p88 p92

Then a is congruent to b modulo n, denoted $a \equiv b \pmod{n}$, provided n divides a - b. **Rmk.** Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. The following are equivalent (TFAE).

(1) a is congruent to b modulo n(2) $a \equiv b \pmod{n}$ (3) $n \operatorname{divides} a - b$, i.e., n | (a - b)(4) $(\exists k \in \mathbb{Z}) [a - b = nk]$ (5) $(\exists k \in \mathbb{Z}) [a = b + nk]$ Note (1) $\stackrel{\text{notation}}{\longleftrightarrow} (2) \stackrel{\text{def. of}}{\longleftrightarrow} (3) \stackrel{\text{def. of}}{\longleftrightarrow} (4) \stackrel{\text{algebra}}{\longleftrightarrow} (5)$. Similiarly, (1') \Leftrightarrow (2') \Leftrightarrow (3') \Leftrightarrow (4') \Leftrightarrow (5').

 \triangleright . You can use (on HW& exams, unless otherwise indicated) any of the above equivalent formations as the definition of $a \equiv b \pmod{n}$.

Thm. Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$ (1) $a \equiv a \pmod{n}$ (2) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$. ER 11 (reflexive) (reflexive) (symmetric)

(3) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Thm. Thm. 3.30. Congruence modulo n is an equivalence relation.

Def. Congruent is a **relation** means that $a \equiv b \pmod{n}$ is either true or false, but not both. The adjective **equivalence** means the relation is: reflexive, symmetric, and transitive. $\langle rst \rangle$

Thm. Modulo Arithmetic. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let the congruences in (3) and (4) hold.

$$a_1 \equiv a_2 \pmod{\mathbf{n}} \tag{3}$$

$$b_1 \equiv b_2 \pmod{n} \tag{4}$$

Then the congruences in (5) and (6) hold.

 $a_1 + b_1 \equiv a_2 + b_2 \pmod{n} \tag{5}$

$$a_1b_1 \equiv a_2b_2 \qquad (\text{mod } n) \tag{6}$$

§3.2 More Methods of Proofs

▶. More (other than direct) methods of proof:

contrapositive, biconditional, other logical equivalency, constructive/nonconstructive proofs.

Often, these new methods <u>reduces</u> the problem down to a direct proof.

▷. The below Theorem and Corollary are used often in the homework problems (and you can quote them).

Thm. $(\forall n \in \mathbb{Z}) [n \text{ is even } \Leftrightarrow n^2 \text{ is even }].$

cor. $(\forall n \in \mathbb{Z}) [n \text{ is odd } \Leftrightarrow n^2 \text{ is odd }].$

§3.3 Proof by Contradiction

A real number x is a <u>rational</u> number provided that $(\exists (a, b) \in \mathbb{Z}^2) [x = \frac{a}{b} \land b \neq 0].$ Def. p122 , or equivalently, provided that $(\exists (a, b) \in \mathbb{Z} \times \mathbb{N}) [x = \frac{a}{b}].$ A real number that is not a rational number is called an <u>irrational number</u>.

The rational numbers are denoted by \mathbb{Q} . Thus the irrational numbers are $\mathbb{R} \setminus \mathbb{Q}$. Rmk.

- Since 75 factors as $75 = (3) (25) = (3) (5^2)$, the prime factorization of 75 is: $75 = (3^1) (5^2)$. note.
- Each $n \in \mathbb{N} \setminus \{1\}$ has a unique prime factorization.

Theorem 8.15 (The Fundamental Theorem of Arithmetic/Prime Factorization) Thm.

For each $n \in \mathbb{N} \setminus \{1\}$ there exists unique $m \in \mathbb{N}$ (*m* is the number of primes in the prime factorization)

prime numbers p_1, p_2, \ldots, p_m and and natural numbers k_1, k_2, \ldots, k_m such that

$$n = \prod_{i=1}^{m} \left(p_i \right)^{k_i}$$

and $p_1 < p_2 < \ldots < p_{m-1} < p_m$. (We often say: the prime factorization of \boldsymbol{n} is "unique up to ordering")

§3.4 Using Cases in Proofs

- A proof by cases (also called proof by exhaustion) is a proof consisting of examining every possible case.
- Let $n \in \mathbb{N} \setminus \{1\}$ have a prime factorization $n = \prod_{i=1}^{m} (p_i)^{k_i}$, where each p_i is a prime number and Rmk. each $k_i \in \mathbb{N}$. Then

 - n is even if and only if 2 ∈ {p₁,..., p_m}
 n is odd if and only if 2 ∉ {p₁,..., p_m}.
- For $x \in \mathbb{R}$, the absolute value of x, denoted |x|, is Def.

$$|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}.$$

§3.5 Division Algorithm/Congruence

Thm. 3.31⁺. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Thm. There exists $q, r \in \mathbb{Z}$ such that a = nq + r if and only if $a \equiv r \pmod{n}$. Thinking Land of Proof: $a = nq + r \iff a - r = nq \iff n \mid (a - r) \iff a \equiv r \pmod{n}$.

An $a \in \mathbb{Z}^{\geq 0}$ is congruent (modulo n) to the remainder obtained when a is divided by $n \in \mathbb{N}$. Rmk.

Cor. 3.32. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that Cor.

> 0 < r < n . $a \equiv r \pmod{n}$ and

Cor 3.32⁺. Fix $s \in \mathbb{Z}$. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that Cor.

$$a \equiv r \pmod{n}$$
 and $s \leq r < s + n$

TL of Proof: Fix $s \in \mathbb{Z}$. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Apply Thm. DA⁺ to express a = nq + r for a unique $q \in \mathbb{Z}$ and unique $r \in \mathbb{Z}$ with $s \leq r < s + n$. Then use Thm. 3.31⁺.

Question: Why is Cor. 3.32^+ a corollary to Theorem 3.31^+ ?

Rmk. Cor. 3.32^+ can be used set up a proof by cases. The $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ are given in the theorem's statement. Pick $s \in \mathbb{Z}$ (pick s to make the arithmetic easy). Then the integer a is congruent modulo n to precisely one of the integer in the set $\{s, s+1, s+2, \ldots, s+n-1\}$, which contains n elements. So we can consider these n cases for a.

Exercise 3.5.5a. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then $n \mid a$ if and only if $a \equiv 0 \pmod{n}$. Rmk. p153 Why? $a \equiv 0 \pmod{n} \iff n \mid (a - 0) \iff n \mid a$.

Thm. 3.28. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. If $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then Thm. p147 (1) $(a_1 + b_1) \equiv (a_2 + b_2) \pmod{n}$

- (2) $(a_1 \cdot b_1) \equiv (a_2 \cdot b_2) \pmod{n}$ (3) $(a_1)^m \equiv (a_2)^m \pmod{n}$ for each $m \in \mathbb{N}$.

not in book

p150

p135

p150

p432 p427

Thinking Lands Rough Outlines

▶. Let P(x), Q(x), and R(x) be open sentences in the variable x.

$(\forall x \in U) \ [R(x)]$

▶. $\underline{\text{Direct proof}}$

TL.

TL.

Let $x \in U$. We shall show R(x). (Start arguing that R(x) holds.)

▶. Proof by Contradiction (BWOC stands for by way of contradiction)

Viewpoint 1. Fix/let $x \in U$. We shall show R(x) by contradiction. BWOC, **assume** ~ R(x). (Start looking for a contradiction.)

TL. Viewpoint 2.

We shall show $(\forall x \in U) [R(x)]$ by contradiction. BWOC, **assume** $\sim (\forall x \in U) [R(x)]$. So assume $(\exists x \in U) [\sim R(x)]$. So assume there exists $x \in U$ such that $\sim R(x)$. (Start looking for a contradiction.)

▷ Compare Viewpoints 1 and 2. Do you see both viewpoints lead to the same place/assumption?

 $(\forall x \in U) \ [P(x) \Rightarrow Q(x)]$

 $\sim Q(x) \Rightarrow \sim P(x)$.

 $\blacktriangleright. \underline{\text{Direct proof}}$

TL. Let $x \in U$. Let P(x) hold/be-true.

We shall show Q(x) holds/is-true (Start arguing that Q(x) holds.)

- ►. <u>Proof by contrapostive</u>
- TL. Let $x \in U$.

We shall show $P(x) \Rightarrow Q(x)$ by contrapositive. Thus, we shall show $\langle , \text{ usually by direct proof}, \rangle$ that

Let

$$\sim Q(x)$$
 hold/be-true.

 \langle Start arguing that $\sim P(x)$ holds/is-true. \rangle

▶. Proof by contradiction

TL. (Let's use the above Viewpoint 1 from Proof by Contradiction for $(\forall x \in U) [R(x)]$, with R(x) being $P(x) \Rightarrow Q(x)$.) Fix/let $x \in U$.

We shall show $P(x) \Rightarrow Q(x)$ by contradiction.

BWOC, **assume** ~ [$P(x) \Rightarrow Q(x)$] and WantToFind a contradiction.

 $\langle \text{Think of } \sim [P \Rightarrow Q] \text{ as a broken promise so } \sim [P \Rightarrow Q] \equiv [P \land \sim Q]. \rangle$

So we shall **assume** that

$$\sim Q(x)$$
 (*)

AND

$$P(x)$$
. (**)

 $\langle \operatorname{Now}$ we WantToFind a contradiction. \rangle

 \triangleright For $(\forall x \in U) [P(x) \Rightarrow Q(x)]$, note similarity in logic between proof by contrapositive & contradiction.

 $\S{3.3}$

 $\S{3.1}$

 $\S{3.2}$

§3.3

(*)