§3．1：Direct Proofs

－．Section 3.1 （Direct Proofs）is a reinforcement of Section 1.2 （Constructing Direct Proof）． $\S 1.2$ introduced direct proof using the concepts of even and odd integers．
$\S 3.1$ reinforces direct proofs by using concepts（probably know from high school）other than just even／odd．

> Some Math Terninology

1．A proof in mathematics is a convincing argument that some mathematical statement is true．〈Proof is a noun while prove is a verb．So we prove a true stament by providing a proof of the statement．〉
2．A definition is simply an agreement as to the meaning of a particular term．〈e．g．，even integer〉
3．There are undefined terms in math．＜Simply put，we must start somewhere．E．g．，in Euclidean Geometry：point\＆line．＞
4．An axiom is a mathematical statement that is accepted without proof．
5．A lemma is a true statement that was proven mainly to help in the proof of some theorem．
6．A theorem is a true mathematical statement for which we have a proof．〈Theorem is abbreviated by Thm．．〉
7．A proposition is a small theorem．〈this def．of proposition is more common than using prop．to mean statement〉
8．A corollary is a（small）thm．that is easily proven once some other（bigger）thm．has been proven．
9．A conjecture is a statement that we believe is plausible（but we do not have a proof for it ．．．yet）．
＜To show a conjecture is true，we prove the conjecture．
To show a conjecture is false，you can find a counterexample to the conjecture．$>$
Def．A constructive proof is a proof where we use your givens to construct the desired object that we want to show exists．
E．g．Theorem．There exists a real number x such that $x^{2}-9=0$ ．
Proof．Let $x=3$ ．Then $x \in \mathbb{R}$ and $x^{2}-9=3^{2}-9=0$ ．When have just 〈constructively〉 proved that there exists a real number x such that $x^{2}-9=0$ ．

Definitions used in HW

Def．A natural number p is a prime number provided $p \neq 1$ and the only natural numbers that are factors of p are： 1 and p ．A natural number c is a composite number provided $c \neq 1$ and c is not a prime number．〈The number 1 is neither prime nor composite．In Math 546 you will learn 1 is a unit．〉
so．A $p \in \mathbb{N}$ is a prime number provided $\quad(p \neq 1) \wedge(\forall d \in \mathbb{N})[d \mid p \Rightarrow(d=1 \vee d=p)]$ A $c \in \mathbb{N}$ is a composite number provided $(c \neq 1) \wedge(c$ is not a prime number $)$ ．
The number 1 is neither prime nor composite．

> | Division Algorithm (DA) Revisited |
| :--- |

Lemma．Lemma DA．Fix $s \in \mathbb{Z} .\langle s$ is the starting number for the ramainder．In DA，remainder $r \in\{0,1, \ldots, n-1\}$ so $s=0$ ．\rangle Let $n \in \mathbb{N}$ and $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ such that $n q_{1}+r_{1}=n q_{2}+r_{2}$ with $s \leq r_{1}<s+n$ and $s \leq r_{2}<s+n$ ． Then $q_{1}=q_{2}$ and $r_{1}=r_{2}$ ．
Why？Let the given hold．Note $-n<r_{2}-r_{1}<n$ since $s \leq r_{2}<s+n$ and $-s-n<-r_{1} \leq-s$ ．
Since $n q_{1}+r_{1}=n q_{2}+r_{2}$ get $n\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$ ．So $-n<n\left(q_{1}-q_{2}\right)<n$ ．Since $n \neq 0$ get $-1<q_{1}-q_{2}<1$ ． Since $q_{1}-q_{2} \in \mathbb{Z}$ ，get $q_{1}-q_{2}=0$ ．So $q_{1}=q_{2}$ ．Since $n q_{1}+r_{1}=n q_{2}+r_{2}$ we get $r_{1}=r_{2}$ ．
Recall．Thm．DA．For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ ，there exist unique integers q and r so that

$$
\begin{equation*}
a=n q+r \quad \text { and } \quad 0 \leq r<n . \tag{1}
\end{equation*}
$$

Why？The existence part is beyond the scope of this class．For the uniqueness part，let $a=n q_{1}+r_{1}$ and $a=n q_{2}+r_{2}$ for some $q_{1}, q_{2}, r_{1}, r_{2} \in \mathbb{Z}$ with $0 \leq r_{1}<n$ and $0 \leq r_{2}<n$ ．Apply above Lemma DA（with $s=0$ ）to get $q_{1}=q_{2}$ and $r_{1}=r_{2}$ ．
®．DA symbolically：$(\forall n \in \mathbb{N})(\forall a \in \mathbb{Z})(\exists!q \in \mathbb{Z})(\exists!r \in \mathbb{Z})[a=n q+r \wedge 0 \leq r<n]$ ．
Rmk．The equality in（1）can be thought of as $\frac{a}{n}=q+\frac{r}{n}$（but we do not write like this in our proofs） and so we say：when we divide the a by n ，the quotient is q and the remainder is r ．
Cor．Thm．DA ${ }^{+}$．Fix $s \in \mathbb{Z}$ ．For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ ，there exist unique integers q_{s} and r_{s} s．t．

$$
\begin{equation*}
a=n q_{s}+r_{s} \quad \text { and } \quad s \leq r_{s}<s+n . \tag{2}
\end{equation*}
$$

Why？The existence part follows from Thm．DA．The uniqueness part follows from Lemma DA．

Def. A nonzero integer n divides an integer b, denoted $n \mid b$, provided that $(\exists k \in \mathbb{Z})[n k=b]$.
rmk. The integer 0 does not divide any integer. For $n \in \mathbb{Z} \backslash\{0\}$ and $b \in \mathbb{Z}$, TFAE.

- $n \mid b$
- n divides b
- n is a divisor of b
$\circ n$ is a factor of $b \quad \circ b$ is a multiple of n
Do NOT express $n \mid b$ as $\frac{b}{n}$. Why?
Thm. Let a, b, and c be integers with $a \neq 0$ and $b \neq 0$. If $a \mid b$ and $b \mid c$, then $a \mid c$. I.e., "divides" is transitive.
Def. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.
Then a is congruent to b modulo n, denoted $a \equiv b(\bmod n)$, provided n divides $a-b$.
Rmk. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. The following are equivalent (TFAE).
(1) a is congruent to b modulo n
(2) $a \equiv b(\bmod n)$
(3) n divides $a-b$, i.e., $n \mid(a-b)$
(4) $(\exists k \in \mathbb{Z})[a-b=n k]$
(5) $(\exists k \in \mathbb{Z})[a=b+n k]$
$\left(1^{\prime}\right) b$ is congruent to a modulo n
(2') $b \equiv a(\bmod \mathrm{n})$
(3') n divides $b-a$, i.e., $n \mid(b-a)$
to see $(4) \Leftrightarrow\left(4^{\prime}\right)$
(4') $(\exists j \in \mathbb{Z})[b-a=n j]$
take $j=-k$
(5') $(\exists j \in \mathbb{Z})[b=a+n j]$

Note $(1) \stackrel{\text { notation }}{\Longleftrightarrow}(2) \underset{\text { congruence }}{\text { def. of }}(3) \underset{\text { divides }}{\stackrel{\text { def. of }}{\Longrightarrow}}(4) \stackrel{\text { algebra }}{\Longleftrightarrow}(5)$. Similiarly, $\left(1^{\prime}\right) \Leftrightarrow\left(2^{\prime}\right) \Leftrightarrow\left(3^{\prime}\right) \Leftrightarrow\left(4^{\prime}\right) \Leftrightarrow\left(5^{\prime}\right)$.
D. You can use (on HW\& exams, unless otherwise indicated) any of the above equivalent formations as the definition of $a \equiv b$ (mod n).

Thm. Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$
(1) $a \equiv a(\bmod n) \quad$ (reflexive)
(2) If $a \equiv b(\bmod \mathrm{n})$, then $b \equiv a(\bmod \mathrm{n})$.
(3) If $a \equiv b(\bmod \mathrm{n})$ and $b \equiv c(\bmod \mathrm{n})$, then $a \equiv c(\bmod \mathrm{n})$.

Thm. Thm. 3.30. Congruence modulo n is an equivalence relation.
Def. Congruent is a relation means that $a \equiv b(\bmod n)$ is either true or false, but not both.
The adjective equivalence means the relation is: reflexive, symmetric, and transitive. < rst>
Thm. Modulo Arithmetic. Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, b_{1}, b_{2} \in Z$.
Let the congruences in (3) and (4) hold.

$$
\begin{align*}
& a_{1} \equiv a_{2}(\bmod \mathrm{n}) \tag{3}\\
& b_{1} \equiv b_{2}(\bmod \mathrm{n}) \tag{4}
\end{align*}
$$

Then the congruences in (5) and (6) hold.

$$
\begin{align*}
a_{1}+b_{1} & \equiv a_{2}+b_{2} & (\bmod n) \tag{5}\\
a_{1} b_{1} & \equiv a_{2} b_{2} & (\bmod n) \tag{6}
\end{align*}
$$

$$
\S 3.2 \text { More Methods of Proofs }
$$

-. More (other than direct) methods of proof:

contrapositive, biconditional, other logical equivalency, constructive/nonconstructive proofs.

Often, these new methods reduces the problem down to a direct proof.
■. The below Theorem and Corollary are used often in the homework problems (and you can quote them).
Thm. $\quad(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^{2}$ is even].
Cor. $\quad(\forall n \in \mathbb{Z})\left[n\right.$ is odd $\Leftrightarrow n^{2}$ is odd $]$.

ER 11

Def. A real number x is a rational number provided that $\left(\exists(a, b) \in \mathbb{Z}^{2}\right)\left[x=\frac{a}{b} \wedge b \neq 0\right]$.
A real number that is not a rational number is called an irrational number.
Rmk. The rational numbers are denoted by \mathbb{Q}. Thus the irrational numbers are $\mathbb{R} \backslash \mathbb{Q}$.
note. Since 75 factors as $75=(3)(25)=(3)\left(5^{2}\right)$, the prime factorization of 75 is: $75=\left(3^{1}\right)\left(5^{2}\right)$.
Each $n \in \mathbb{N} \backslash\{1\}$ has a unique prime factorization.
Thm. Theorem 8.15 (The Fundamental Theorem of Arithmetic/Prime Factorization)
For each $n \in \mathbb{N} \backslash\{1\}$ there exists unique $\quad m \in \mathbb{N} \quad\langle m$ is the number of primes in the prime factorization \rangle and prime numbers $p_{1}, p_{2}, \ldots, p_{m} \quad$ and \quad natural numbers $k_{1}, k_{2}, \ldots, k_{m}$
such that

$$
n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}}
$$

and $p_{1}<p_{2}<\ldots<p_{m-1}<p_{m}$. (We often say: the prime factorization of n is "unique up to ordering")

$$
\S 3.4 \text { Using Cases in Proofs }
$$

- A proof by cases (also called proof by exhaustion) is a proof consisting of examining every possible case.

Rmk. Let $n \in \mathbb{N} \backslash\{1\}$ have a prime factorization $n=\prod_{i=1}^{m}\left(p_{i}\right)^{k_{i}}$, where each p_{i} is a prime number and each $k_{i} \in \mathbb{N}$. Then

- n is even if and only if $2 \in\left\{p_{1}, \ldots, p_{m}\right\}$
- n is odd if and only if $2 \notin\left\{p_{1}, \ldots, p_{m}\right\}$.

Def. For $x \in \mathbb{R}$, the absolute value of x, denoted $|x|$, is

$$
|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}
$$

§3.5 Division Algorithm/Congruence

Thm. Thm. 3.31 ${ }^{+}$. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$.
There exists $q, r \in \mathbb{Z}$ such that $a=n q+r$ if and only if $a \equiv r(\bmod \mathrm{n})$.
Thinking Land of Proof: $a=n q+r \Leftrightarrow a-r=n q \quad \Leftrightarrow \quad n \mid(a-r) \Leftrightarrow a \equiv r(\bmod n)$.
Rmk. An $a \in \mathbb{Z}^{\geq 0}$ is congruent (modulo n) to the remainder obtained when a is divided by $n \in \mathbb{N}$.
Cor. Cor. 3.32. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that

$$
a \equiv r \quad(\bmod n) \quad \text { and } \quad 0 \leq r<n .
$$

Cor. Cor 3.32^{+}. Fix $s \in \mathbb{Z}$. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ such that

$$
a \equiv r \quad(\bmod n) \quad \text { and } \quad s \leq r<s+n
$$

$T L$ of Proof: Fix $s \in \mathbb{Z}$. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Apply Thm. DA ${ }^{+}$to express $a=n q+r$ for a unique $q \in \mathbb{Z}$ and unique $r \in \mathbb{Z}$ with $s \leq r<s+n$. Then use Thm. 3.31 ${ }^{+}$.
Question: Why is Cor. 3.32^{+}a corollary to Theorem 3.31^{+}?
$R m k$. Cor. 3.32^{+}can be used set up a proof by cases. The $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ are given in the theorem's statement. Pick $s \in \mathbb{Z}\langle$ pick s to make the arithmetic easy \rangle. Then the integer a is congruent modulo n to precisely one of the integer in the set $\{s, s+1, s+2, \ldots, s+n-1\}$, which contains n elements. So we can consider these n cases for a.
Rmk. Exercise 3.5.5a. Fix $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then $n \mid a$ if and only if $a \equiv 0(\bmod n)$.
Why? $\quad a \equiv 0(\bmod n) \Leftrightarrow n|(a-0) \Leftrightarrow n| a$.
Thm. Thm. 3.28. Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$. If $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2}(\bmod n)$, then
(1) $\left(a_{1}+b_{1}\right) \equiv\left(a_{2}+b_{2}\right)(\bmod n)$
(2) $\left(a_{1} \cdot b_{1}\right) \equiv\left(a_{2} \cdot b_{2}\right) \quad(\bmod n)$
(3) $\left(a_{1}\right)^{m} \equiv\left(a_{2}\right)^{m} \quad(\bmod n)$ for each $m \in \mathbb{N}$.
－Let $P(x), Q(x$ ，and $R(x)$ be open sentences in the variable x ．

$$
(\forall x \in U)[R(x)]
$$

－Direct proof
тL．Let $x \in U$ ．
We shall show $R(x)$ ．
〈Start arguing that $R(x)$ holds．〉
－．Proof by Contradiction（BWOC stands for by way of contradiction）
тL．Viewpoint 1.
Fix／let $x \in U$ ．
We shall show $R(x)$ by contradiction．
BWOC，assume $\sim R(x)$ ．
〈Start looking for a contradiction．〉
тL．Viewpoint 2.
We shall show $(\forall x \in U)[R(x)]$ by contradiction．
BWOC，assume $\sim(\forall x \in U)[R(x)]$ ．
So assume $(\exists x \in U)[\sim R(x)]$ ．
So assume there exists $x \in U$ such that $\sim R(x)$ ．
〈Start looking for a contradiction．〉
\triangleright Compare Viewpoints 1 and 2．Do you see both viewpoints lead to the same place／assumption？

$$
(\forall x \in U)[P(x) \Rightarrow Q(x)]
$$

－Direct proof

тL．Let $x \in U$ ．
Let $P(x)$ hold／be－true．
We shall show $Q(x)$ holds／is－true 〈Start arguing that $Q(x)$ holds．〉
－Proof by contrapostive
тL．Let $x \in U$ ．
We shall show $P(x) \Rightarrow Q(x)$ by contrapositive．
Thus，we shall show \langle ，usually by direct proof，\rangle that

$$
\sim Q(x) \Rightarrow \sim P(x)
$$

Let

$$
\begin{equation*}
\sim Q(x) \text { hold/be-true. } \tag{*}
\end{equation*}
$$

〈Start arguing that $\sim P(x)$ holds／is－true．\rangle
－．Proof by contradiction
TL．〈Let＇s use the above Viewpoint 1 from Proof by Contradiction for $(\forall x \in U)[R(x)]$ ，with $R(x)$ being $P(x) \Rightarrow Q(x)$ ．\rangle
Fix／let $x \in U$ ．
We shall show $P(x) \Rightarrow Q(x)$ by contradiction．
BWOC，assume $\sim[P(x) \Rightarrow Q(x)]$ and WantToFind a contradiction．
\langle Think of $\sim[P \Rightarrow Q]$ as a broken promise so $\sim[P \Rightarrow Q] \equiv[P \wedge \sim Q]$.
So we shall assume that

$$
\begin{equation*}
\sim Q(x) \tag{*}
\end{equation*}
$$

AND

$$
\begin{equation*}
P(x) \tag{**}
\end{equation*}
$$

\langle Now we WantToFind a contradiction．〉
\triangleright For $(\forall x \in U)[P(x) \Rightarrow Q(x)]$ ，note similarity in logic between proof by contrapostive \＆contradiction．

