
Prof. Girardi Ch 3: Methods of Proofs

§3.1: Direct Proofs

I. Section 3.1 (Direct Proofs) is a reinforcement of Section 1.2 (Constructing Direct Proof).
§1.2 introduced direct proof using the concepts of even and odd integers.
§3.1 reinforces direct proofs by using concepts (probably know from high school) other than just even/odd.

Some Math Terninology p85-86

1. A proof in mathematics is a convincing argument that some mathematical statement is true. §1.2
p22〈

::::
Proof is a noun while

::::
prove is a verb. So we

:::::
prove a true stament by providing a

::::
proof of the statement. 〉

2. A definition is simply an agreement as to the meaning of a particular term. 〈e.g., even integer 〉
3. There are undefined terms in math. <Simply put, we must start somewhere. E.g., in Euclidean Geometry: point&line.>

4. An axiom is a mathematical statement that is accepted without proof.
5. A lemma is a true statement that was proven mainly to help in the proof of some theorem.
6. A theorem is a

::::
true mathematical statement for which we have a proof. 〈Theorem is abbreviated by Thm.. 〉

7. A proposition is a small theorem. 〈 this def. of proposition is more common than using prop. to mean statement 〉
8. A corollary is a (small) thm. that is easily proven once some other (bigger) thm. has been proven.
9. A conjecture is a statement that we believe is plausible (but we do not have a proof for it . . . yet).

<To show a conjecture is
:::
true, we prove the conjecture.

To show a conjecture is
:::
false, you can find a counterexample to the conjecture.>

Def. A constructive proof is a proof where we use your givens to construct the desired object that p88

we want to show exists.
E.g. Theorem. There exists a real number x such that x2 − 9 = 0.
Proof. Let x = 3. Then x ∈ R and x2− 9 = 32− 9 = 0. When have just 〈constructively 〉 proved that
there exists a real number x such that x2 − 9 = 0. �

Definitions used in HW

Def. A natural number p is a prime number provided p 6= 1 and the only natural numbers that are p78

factors of p are: 1 and p. A natural number c is a composite number provided c 6= 1 and c is
not a prime number. 〈The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a

:::
unit. 〉

So. A p ∈ N is a prime number provided (p 6= 1) ∧ (∀d ∈ N) [ d|p⇒ (d = 1 ∨ d = p) ]
A c ∈ N is a composite number provided (c 6= 1) ∧ (c is not a prime number).
The number 1 is neither prime nor composite.

Division Algorithm (DA) Revisited

Lemma. Lemma DA. Fix s ∈ Z. 〈s is the starting number for the ramainder. In DA, remainder r ∈ {0, 1, . . . , n−1} so s = 0. 〉 not in

bookLet n ∈ N and q1, q2, r1, r2 ∈ Z such that nq1 +r1 = nq2 +r2 with s ≤ r1 < s+n and s ≤ r2 < s+n.
Then q1 = q2 and r1 = r2.

Why? Let the given hold. Note −n < r2 − r1 < n since s ≤ r2 < s+ n and −s− n < −r1 ≤ −s.
Since nq1 + r1 = nq2 + r2 get n(q1 − q2) = r2 − r1. So −n < n(q1 − q2) < n. Since n 6= 0 get −1 < q1 − q2 < 1.

Since q1 − q2 ∈ Z, get q1 − q2 = 0. So q1 = q2. Since nq1 + r1 = nq2 + r2 we get r1 = r2.

Recall. Thm. DA. For all n ∈ N and a ∈ Z, there exist unique integers q and r so that p143

a = nq + r and 0 ≤ r < n . (1)

Why? The existence part is beyond the scope of this class. For the uniqueness part, let a = nq1+r1 and a = nq2+r2
for some q1, q2, r1, r2 ∈ Z with 0 ≤ r1 < n and 0 ≤ r2 < n. Apply above Lemma DA (with s = 0) to get q1 = q2
and r1 = r2.

.. DA symbolically: (∀n ∈ N) (∀a ∈ Z) (∃!q ∈ Z) (∃!r ∈ Z) [ a = nq + r ∧ 0 ≤ r < n ].

Rmk. The equality in (1) can be thought of as a
n

= q + r
n

(but we do not write like this in our proofs) p144

and so we say: when we divide the a by n, the quotient is q and the remainder is r.

Cor. Thm. DA+. Fix s ∈ Z. For all n ∈ N and a ∈ Z, there exist unique integers qs and rs s.t. not in
book

a = nqs + rs and s ≤ rs < s + n . (2)

Why? The existence part follows from Thm. DA. The uniqueness part follows from Lemma DA.
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Divides and Congruent

Def. A nonzero integer n divides an integer b, denoted n|b, provided that (∃k ∈ Z) [nk = b]. p82

Rmk. The integer 0 does not divide any integer. For n ∈ Z \ {0} and b ∈ Z, TFAE.

◦ n|b
◦ n divides b
◦ n is a divisor of b
◦ n is a factor of b ◦ b is a multiple of n

Do NOT express n|b as b
n

. Why? p82

Thm. Let a, b, and c be integers with a 6= 0 and b 6= 0. If a|b and b|c, then a|c. I.e., “divides” is transitive. Thm3.1

p88
Def. Let n ∈ N and a, b ∈ Z. p92

Then a is congruent to b modulo n, denoted a ≡ b (mod n), provided n divides a− b.

Rmk. Let n ∈ N and a, b ∈ Z. The following are equivalent (TFAE).

(1) a is congruent to b modulo n

(2) a ≡ b (mod n)
(3) n divides a− b, i.e., n|(a− b)

(4) (∃k ∈ Z) [a− b = nk]
to see (4)⇔(4′)⇐⇒

take j=−k
(5) (∃k ∈ Z) [a = b + nk]

(1′) b is congruent to a modulo n

(2′) b ≡ a (mod n)
(3′) n divides b− a, i.e., n|(b− a)

(4′) (∃j ∈ Z) [b− a = nj]
(5′) (∃j ∈ Z) [b = a + nj]

Note (1)
notation⇐====⇒ (2)

def. of⇐=====⇒
congruence

(3)
def. of⇐===⇒
divides

(4)
algebra⇐===⇒ (5). Similiarly, (1′) ⇔ (2′) ⇔ (3′) ⇔ (4′) ⇔ (5′).

.. You can use (on HW& exams, unless otherwise indicated) any of the above equivalent formations as the definition of a ≡ b (mod n).

Thm. Let n ∈ N and a, b, c ∈ Z ER 11

p98(1) a ≡ a (mod n) (reflexive)
(2) If a ≡ b (mod n), then b ≡ a (mod n). (symmetric)
(3) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n). (transitive)

Thm. Thm. 3.30. Congruence modulo n is an
:::::::::::::
equivalence relation. p148

Def. Congruent is a relation means that a ≡ b (mod n) is either true or false, but not both.
The adjective equivalence means the relation is: reflexive, symmetric, and transitive. < rst>

Thm. Modulo Arithmetic. Let n ∈ N and a1, a2, b1, b2 ∈ Z. ER 12

p98Let the congruences in (3) and (4) hold.

a1 ≡ a2 (mod n) (3)

b1 ≡ b2 (mod n) (4)

Then the congruences in (5) and (6) hold.

a1 + b1 ≡ a2 + b2 (mod n) (5)

a1b1 ≡ a2b2 (mod n) (6)

§3.2 More Methods of Proofs

I. More (other than direct) methods of proof:

:::::::::::::::
contrapositive,

::::::::::::::
biconditional,

:::::
other

::::::::
logical

::::::::::::
equivalency,

:::::::::::::::::::::::::::::
constructive/nonconstructive

::::::::
proofs .

Often, these new methods reduces the problem down to a direct proof.

.. The below Theorem and Corollary are used often in the homework problems (and you can quote them).

Thm. (∀n ∈ Z) [ n is even ⇔ n2 is even ]. Thm3.10

p108
Cor. (∀n ∈ Z) [ n is odd ⇔ n2 is odd ]. not in

book
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§3.3 Proof by Contradiction

Def. A real number x is a rational number provided that (∃ (a, b) ∈ Z2)
[
x = a

b
∧ b 6= 0

]
. p122

, or equivalently, provided that (∃ (a, b) ∈ Z× N)
[
x = a

b

]
.

A real number that is not a rational number is called an irrational number.

Rmk. The rational numbers are denoted by Q. Thus the irrational numbers are R \Q.

note. Since 75 factors as 75 = (3) (25) = (3) (52), the
::::::
prime

:::::::::::::
factorization of 75 is: 75 = (31) (52).

Each n ∈ N \ {1} has a unique prime factorization.

Thm. Theorem 8.15 (The Fundamental Theorem of Arithmetic/Prime Factorization) p432

p427For each n ∈ N \ {1} there exists
:::::::
unique m ∈ N 〈m is the number of primes in the prime factorization 〉

::::
and prime numbers p1, p2, . . . , pm ::::

and natural numbers k1, k2, . . . , km

such that

n =
m∏
i=1

(pi)
ki

and p1 < p2 < . . . < pm−1 < pm. (We often say: the prime factorization of n is “unique up to ordering”)

§3.4 Using Cases in Proofs

I. A proof by cases (also called proof by exhaustion) is a proof consisting of examining
::::::
every possible case.

Rmk. Let n ∈ N \ {1} have a prime factorization n =
∏m

i=1 (pi)
ki , where each pi is a prime number and

each ki ∈ N. Then
• n is even if and only if 2 ∈ {p1, . . . , pm}
• n is odd if and only if 2 6∈ {p1, . . . , pm}.

Def. For x ∈ R, the absolute value of x, denoted |x|, is p135

|x| =

{
x, if x ≥ 0

−x, if x < 0 .

§3.5 Division Algorithm/Congruence

Thm. Thm. 3.31+. Let n ∈ N and a ∈ Z. p150

There exists q, r ∈ Z such that a = nq + r if and only if a ≡ r (mod n).
Thinking Land of Proof : a = nq + r ⇔ a− r = nq ⇔ n| (a− r) ⇔ a ≡ r (mod n).

Rmk. An a ∈ Z≥0 is congruent (modulo n) to the
:::::::::::
remainder obtained when a is divided by n ∈ N.

Cor. Cor. 3.32. Fix n ∈ N and a ∈ Z. Then there exists a
:::::::
unique r ∈ Z such that p150

a ≡ r (mod n) and 0 ≤ r < n .

Cor. Cor 3.32+. Fix s ∈ Z. Fix n ∈ N and a ∈ Z. Then there exists a
:::::::
unique r ∈ Z such that not in

book
a ≡ r (mod n) and s ≤ r < s + n .

TL of Proof : Fix s ∈ Z. Let n ∈ N and a ∈ Z. Apply Thm. DA+ to express a = nq + r for a unique q ∈ Z and
unique r ∈ Z with s ≤ r < s+ n. Then use Thm. 3.31+.

Question: Why is Cor. 3.32+ a
::::::::
corollary to Theorem 3.31+?

Rmk. Cor. 3.32+ can be used set up a proof by cases. The n ∈ N and a ∈ Z are given in the theorem’s statement.
Pick s ∈ Z 〈pick s to make the arithmetic easy 〉. Then the integer a is congruent modulo n to precisely

:::
one of the

integer in the set {s, s+1, s+2, . . . , s+n− 1}, which contains n elements. So we can consider these n cases for a.

Rmk. Exercise 3.5.5a. Fix n ∈ N and a ∈ Z. Then n|a if and only if a ≡ 0 (mod n). p153

Why? a ≡ 0 (mod n) ⇔ n| (a− 0) ⇔ n|a.
Thm. Thm. 3.28. Let n ∈ N and a1, a2, b1, b2 ∈ Z. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then p147

(1) (a1 + b1) ≡ (a2 + b2) (mod n)
(2) (a1 · b1) ≡ (a2 · b2) (mod n)
(3) (a1)m ≡ (a2)m (mod n) for each m ∈ N.
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Thinking Lands Rough Outlines

I. Let P (x), Q(x, and R(x) be open sentences in the variable x.

(∀x ∈ U) [R (x)]

I.
::::::
Direct

::::::
proof §3.1

TL. Let x ∈ U .
We shall show R (x).
〈Start arguing that R (x) holds. 〉

I.
::::::
Proof

:::
by

:::::::::::::::
Contradiction (BWOC stands for by way of contradiction) §3.3

TL. Viewpoint 1.
Fix/let x ∈ U .
We shall show R (x) by contradiction.
BWOC, assume ∼ R (x).
〈Start looking for a contradiction. 〉

TL. Viewpoint 2.
We shall show (∀x ∈ U) [R (x)] by contradiction.
BWOC, assume ∼ (∀x ∈ U) [R (x)].
So assume (∃x ∈ U) [∼ R (x)].
So assume there exists x ∈ U such that ∼ R(x).
〈Start looking for a contradiction. 〉

. Compare Viewpoints 1 and 2. Do you see both viewpoints lead to the same place/assumption?

(∀x ∈ U) [P (x)⇒ Q (x)]

I.
::::::
Direct

::::::
proof §3.1

TL. Let x ∈ U .
Let P (x) hold/be-true.
We shall show Q (x) holds/is-true 〈Start arguing that Q (x) holds. 〉

I.
::::::
Proof

:::
by

::::::::::::::
contrapostive §3.2

TL. Let x ∈ U .
We shall show P (x)⇒ Q (x) by contrapositive.
Thus, we shall show 〈 , usually by direct proof, 〉 that

∼ Q (x)⇒∼ P (x) .

Let
∼ Q (x) hold/be-true. (∗)

〈Start arguing that ∼ P (x) holds/is-true. 〉

I.
::::::
Proof

:::
by

::::::::::::::
contradiction §3.3

TL. 〈Let’s use the above Viewpoint 1 from Proof by Contradiction for (∀x ∈ U) [R (x)], with R (x) being P (x)⇒ Q (x). 〉
Fix/let x ∈ U .
We shall show P (x)⇒ Q (x) by contradiction.

BWOC, assume ∼ [P (x)⇒ Q (x) ] and WantToFind a contradiction.
〈Think of ∼ [ P ⇒ Q ] as a broken promise so ∼ [P ⇒ Q ] ≡ [P∧ ∼ Q ]. 〉

So we shall assume that

∼ Q (x) (∗)
AND

P (x) . (∗∗)
〈Now we WantToFind a contradiction. 〉

. For (∀x ∈ U) [P (x)⇒ Q (x)], note similarity in logic between proof by contrapostive & contradiction.
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