p78

p71

p70

p63

NotInBk

Thm2.16 p67

Four definitions (from number theory) used in the homework exercises.

- **Def.** A $p \in \mathbb{N}$ is **prime** provided $p \neq 1$ and the only natural numbers that are factors of p are: 1 and p. _{P78}
- **Def.** A $c \in \mathbb{N}$ is **composite** provided $c \neq 1$ and c is not a prime number.
- \triangleright . The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a <u>unit</u>.
- **Def.** An integer n is a **multiple of 3** provided: $(\exists k \in \mathbb{Z}) [n = 3k]$.
- **Def.** A natural number n is a **perfect square** provided: $(\exists k \in \mathbb{N}) [n = k^2]$.
- **Def.** The phrase for all (or its equivalents) is a **universal quantifier** and is denoted by \forall . The phrase there exists (or its equivalents) is an **existential quantifier** and is denoted by \exists .

Rmk. The symbol \exists ! reads there exists a unique. (So \exists ! means there exists <u>one and only one</u>. Compare to \exists , which means there exists <u>at least one</u>.)

Rmk. Priority/precedence when parentheses are excluded: \forall and \exists and \exists ! have equal priority and NotInBk come after the logical connective symbols: \sim (high, so do first), \land , \lor , \Rightarrow , \Leftrightarrow (low, so do last).

Statements with one quantifer

▶. Example/Terminology of statement with one qualifier.

Let $P(x)$ be an open sentence of the variable x from the universe U.			
a statement involving	often has the forms	the statement is true provided	
universal quantifier $(\forall x \in U) [P(x)]$	For all $x \in U$, $P(x)$. For every $x \in U$, $P(x)$. For each $x \in U$, $P(x)$.	P(x) is true for all $x \in U$.	
existential quantifier $(\exists x \in U) \ [P(x)]$	There exists an $x \in U$ such that $P(x)$. There is an $x \in U$ such that $P(x)$.	P(x) is true for at least one $x \in U$.	
$(\exists ! x \in U) \ [P(x)]$	There exists a unique $x \in U$ such that $P(x)$.	P(x) is true for precisely one (and only one) $x \in U$.	

- ?. Where does the pharse <u>such that</u> appear in the above chart?
- **Def.** A counterexample to a statement is an example that shows the statement is false. p69 So a counterexample to a statement of the form $(\forall x \in U) [P(x)]$ is an example that shows $(\forall x \in U) [P(x)]$ is false; more specifically, an example/specific-element/constant $c \in U$ for which P(c) is false. <So to show a statement is false, we can find a counterexample to the statement. To show a statement is true, we prove the statement.>
- **Exo.** Review our Symbolically Write Guidelines. (either click the blue link or see next page)
- **Ex1.0.** Do Example 1 part Q. (The O is for original (statement)). (see last page)
- **Thm. Negations of Quantified Statements**. For an open sentence P(x),

$$\sim \{ (\forall x \in U) [P(x)] \} \equiv (\exists x \in U) [\sim P(x)]$$

$$\sim \{ (\exists x \in U) [P(x)] \} \equiv (\forall x \in U) [\sim P(x)]$$

Ex1.N. Do Example 1 part N. (The N is for negation (of the original statement)). (see last page)

Prof. Girardi

Henceforth, when asked to symbolically write a statement follow the below (unless otherwise stated).

- (1) If a statement is a quantified open sentence, then use needed quantifier(s) (e.g.: \forall , \exists , \exists !). Recall
 - \forall reads for all
 - \bullet \exists reads there exists
 - \exists ! reads there exists a unique.
- (2) Use logical connectives symbols (e.g.: $\sim, \wedge, \vee, \implies, \iff$) instead of the English words.
- (3) Within an open sentence, you can use English words that are <u>not</u> logical connectives words.
 E.g., within your open sentence, one can write: "x is even".

Beware: "x and y are odd" should be expressed as "x is odd \wedge y is odd".

- (4) Within an open sentence, you can use math symbols that are not logical connectives. So you may use, e.g.: $x < \sqrt{2}$, x = y, x + y = 17, a|b, $a \equiv b \pmod{n}$, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$.
- (5) Symbolically write the statement as it is stated (rather than something logically equivalent).For example, the statement

if a real number is larger than 3, then its square is larger than
$$9$$
 (1)

can be symbolically written as

$$(\forall x \in \mathbb{R}) \left[x > 3 \implies x^2 > 9 \right] . \tag{yes}$$

The statement in (1) is formulated as in (yes) so symbolically write (1) as (yes).

Do NOT symbolically write the statement in (1) as

$$(\forall x \in \mathbb{R}) \left[x^2 \le 9 \implies x \le 3 \right] \tag{no}$$

since (no) is not as (1) is formulated. Do note (will help you later) that the statement in (yes) is logically equivalent to the statement in (no) (since $[P \implies Q] \equiv [(\sim Q) \implies (\sim P)]$, think contrapositive); thus, if you need to prove the statement in (1), then you can prove (yes) or (no) (choice is yours when proving).

230101

Page 1 of 1

Statements with 2 Like Quantifiers two \forall or two \exists

▶. As we saw in Example 1, we can interchange two \forall in a row. More specifically,

let R(x, y) for an <u>open</u> sentence in the variables x in universe U_1 and y in universe U_2 . Then

$$\left[\left(\forall x \in U_1 \right) \left(\forall y \in U_2 \right) \left[R\left(x, y\right) \right] \right] \equiv \left[\left(\forall y \in U_2 \right) \left(\forall x \in U_1 \right) \left[R\left(x, y\right) \right] \right].$$
(1)

Taking the negation of both sides of (1) gives (the <u>un-useful</u> negations)

$$\sim \left[\left(\forall x \in U_1 \right) \left(\forall y \in U_2 \right) \left[R(x, y) \right] \right] \equiv \sim \left[\left(\forall y \in U_2 \right) \left(\forall x \in U_1 \right) \left[R(x, y) \right] \right].$$
(2)

Cleaning up the un-useful negations in (2) gives

$$\left[(\exists x \in U_1) (\exists y \in U_2) [\sim R(x, y)] \right] \equiv \left[(\exists y \in U_2) (\exists x \in U_1) [\sim R(x, y)] \right].$$
(3)

Denote the <u>open</u> sentence $\sim R(x, y)$ by the <u>open</u> sentence S(x, y) to see that (3) gives

$$\left[(\exists x \in U_1) (\exists y \in U_2) [S(x,y)] \right] \equiv \left[(\exists y \in U_2) (\exists x \in U_1) [S(x,y)] \right].$$
(4)

So we can also interchange two \exists in a row, as seen by (4)

- ⚠. Lesson Learned. We can interchange/switch the order of 2 <u>like/same</u> quantifiers in a row !!!!
- ?. Question. What if we have two *mixed* quantifiers, i.e. one \exists and one \forall ? Can we still interchange the order of the quantifiers? We will find out in the next example.

Statements	with	2	Mi	ixed	Quantifiers
	\rightarrow		ad	0.000	_

one ∀	and	one ∃	

	Symbolic Form	English Form
Statement	$(\exists x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [x + y = 0]$	There exists an integer x such that for each integer y , we have $x + y = 0$.
Negation	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y \neq 0]$	For each integer x , there exists an integer y such that $x + y \neq 0$.

	Symbolic Form	English Form
Statement	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y = 0]$	For each integer x , there is an integer y such that $x + y = 0$.
Negation	$(\exists x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [x + y \neq 0]$	There is an integer x such that for each integer y , we have $x + y \neq 0$.

Ex 2. What about interchange the order of two mixed quantifiers? circle one: yes or no

Ex 1. Read the Symbolically Write Guidelines, which are posted on the course Handout page. Below are variants of statements from previous Exercises. For each Exercise:

- O. Symbolically write (using quantifiers) the original statement. Then indicate whether the original statement is true or false (no justification needed).
- N. Symbolically write (using quantifiers) a <u>useful negation</u> of the original statement. Box your answer. Then indicate whether the negation of the original statement is true or false (no justification needed).
- **1.1.** If m is an odd integer, then 5m + 6 is an even integer.

 \approx ER1.2.4b p27

1.2. If m and n are odd integers, then mn + 7 is an even integer.ER1.2.4cI.e., The sum of 7 and the product of 2 odd integers is an even integer.p27

1.3. If a, b, and c are integers, then $ab^2 + a^3c^4 + a^5b^6c^7 + a^{100}b^{101}c^{102}$ is an odd integer.

≈ER1.2.7a p28