
Prof. Girardi §2.4: Quantifiers and Negations

Four definitions (from number theory) used in the homework exercises.

Def. A p ∈ N is prime provided p 6= 1 and the only natural numbers that are factors of p are: 1 and p. p78

Def. A c ∈ N is composite provided c 6= 1 and c is not a prime number. p78

.. The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a
::::
unit.

Def. An integer n is a multiple of 3 provided: (∃k ∈ Z) [n = 3k]. p71

Def. A natural number n is a perfect square provided: (∃k ∈ N) [n = k2]. p70

Def. The phrase for all (or its equivalents) is a universal quantifier and is denoted by ∀. p63

The phrase there exists (or its equivalents) is an existential quantifier and is denoted by ∃.
Rmk. The symbol ∃! reads there exists a unique. NotInBk

〈So ∃! means there exitsts
:::
one

:::
and

::::
only

::::
one. Compare to ∃, which means there exists

::
at

::::
least

::::
one. 〉

Rmk. Priority/precedence when parentheses are excluded: ∀ and ∃ and ∃! have equal priority and NotInBk

come
:::::
after the logical connective symbols: ∼ (high, so do first) , ∧ , ∨ ,⇒ ,⇔ (low, so do last) .

Statements with one quantifer

I. Example/Terminology of statement with one qualifier.

quantifies the variable x

︷ ︸︸ ︷
( ∀x ∈ U )

open sentence in the variable x

︷ ︸︸ ︷
[ P (x) ]︸ ︷︷ ︸

a statement

p64

Let P (x) be an open sentence of the variable x from the universe U .

a statement involving often has the forms
the statement is true

provided

universal quantifier
(∀x ∈ U) [P (x)]

For all x ∈ U , P (x).
For every x ∈ U , P (x).
For each x ∈ U , P (x).

P (x) is true
for all x ∈ U .

existential quantifier
(∃x ∈ U) [P (x)]

There exists an x ∈ U
:::::
such

:::::
that P (x).

There is an x ∈ U
:::::
such

:::::
that P (x).

P (x) is true
for at least one x ∈ U .

(∃!x ∈ U) [P (x)] There exists a unique x ∈ U
::::
such

:::::
that P (x).

P (x) is true
for precisely one

(and only one) x ∈ U .

?. Where does the pharse
:::::
such

:::::
that appear in the above chart?

Def. A counterexample to a statement is an example that shows the statement is
::::
false. p69

So a counterexample to a statement of the form (∀x ∈ U) [P (x)] is an example that shows
::::::::
(∀x ∈ U) [P (x)]

is false; more specifically, an example/specific-element/constant c ∈ U for which P (c) is false.
<So to show a statement is

:::
false, we can find a

:::::::::::
counterexample to the statement.

To show a statement is
:::
true, we

::::
prove the statement.>

Ex0. Review our Symbolically Write Guidelines. 〈either click the blue link or see next page 〉

Ex1.O. Do Example 1
::::
part

::
O. 〈The O is for original (statement) 〉. 〈 see last page 〉

Thm. Negations of Quantified Statements. For an open sentence P (x), Thm2.16

p67

∼ { (∀x ∈ U) [P (x)] } ≡ (∃x ∈ U) [∼ P (x)]

∼ { (∃x ∈ U) [P (x)] } ≡ (∀x ∈ U) [∼ P (x)]

Ex1.N. Do Example 1
::::
part

::
N. 〈The N is for negation (of the original statement) 〉. 〈 see last page 〉
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Prof. Girardi §2.4: Quantifiers and Negations

Prof. Girardi Symbolically Write

Henceforth, when asked to symbolically write a statement follow the below (unless otherwise stated).

(1) If a statement is a quantified open sentence, then use needed quantifier(s) (e.g.: ∀, ∃, ∃!).
Recall

• ∀ reads for alll

• ∃ reads there exists

• ∃! reads there exists a unique.

(2) Use logical connectives symbols (e.g.: ∼, ∧, ∨, =⇒ , ⇐⇒ ) instead of the English words.

(3) Within an open sentence, you can use English words that are
::::
not logical connectives words.

E.g., within your open sentence, one can write: “x is even”.

Beware: “x and y are odd” should be expressed as “x is odd ∧ y is odd”.

(4) Within an open sentence, you can use math symbols that are
:::
not logical connectives.

So you may use, e.g.: x <
√

2, x = y, x+ y = 17, a|b, a ≡ b (mod n),
n∑

j=1

j2 = n(n+1)(2n+1)
6

.

(5) Symbolically write the statement as it is stated (rather than something logically equivalent).

For example, the statement

if a real number is larger than 3, then its square is larger than 9 (1)

can be symbolically written as

(∀x ∈ R)
[
x > 3 =⇒ x2 > 9

]
. (yes)

The statement in (1) is formulated as in (yes) so
::::::::::::
symbolically

::::::
write (1) as (yes).

Do NOT
:::::::::::::
symbolically

::::::
write the statement in (1) as

(∀x ∈ R)
[
x2 ≤ 9 =⇒ x ≤ 3

]
(no)

since (no) is not as (1) is formulated. Do note 〈will help you later 〉 that the statement in (yes)

is logically equivanlent to the statement in (no) 〈 since [P =⇒ Q] ≡ [(∼ Q) =⇒ (∼ P )], think

contrapositive 〉; thus, if you need to
::::::
prove the statement in (1), then you can prove (yes)

or (no) 〈choice is yours when proving 〉.
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Prof. Girardi §2.4: Quantifiers and Negations

Statements with 2
:::::
Like Quantifiers

two ∀ or two ∃
I. As we saw in Example 1, we can interchange two ∀ in a row. More specifically,

let R (x, y) for an
:::::
open sentence in the variables x in universe U1 and y in unviverse U2. Then

[ (∀x ∈ U1) (∀y ∈ U2) [ R (x, y) ] ] ≡ [ (∀y ∈ U2) (∀x ∈ U1) [ R (x, y) ] ] . (1)

Taking the negation of both sides of (1) gives (the
:::::::::
un-useful negations)

∼ [ (∀x ∈ U1) (∀y ∈ U2) [ R (x, y) ] ] ≡ ∼ [ (∀y ∈ U2) (∀x ∈ U1) [ R (x, y) ] ] . (2)

Cleaning up the un-useful negations in (2) gives

[ (∃x ∈ U1) (∃y ∈ U2) [ ∼ R (x, y) ] ] ≡ [ (∃y ∈ U2) (∃x ∈ U1) [ ∼ R (x, y) ] ] . (3)

Denote the
:::::
open sentence ∼ R (x, y) by the

:::::
open sentence S (x, y) to see that (3) gives

[ (∃x ∈ U1) (∃y ∈ U2) [ S (x, y) ] ] ≡ [ (∃y ∈ U2) (∃x ∈ U1) [ S (x, y) ] ] . (4)

So we can also interchange two ∃ in a row, as seen by (4)

4! . Lesson Learned. We can interchange/switch the order of 2
::::::::::
like/same quantifiers in a row !!!!

?. Question. What if we have two mixed quantifiers, i.e. one ∃ and one ∀?
Can we still interchange the order of the quantifiers? We will find out in the next example.

Statements with 2
:::::::
Mixed Quantifiers

one ∀ and one ∃

Symbolic Form English Form

Statement (∃x ∈ Z) (∀y ∈ Z) [x + y = 0]
There exists an integer x such that

for each integer y, we have x + y = 0.

Negation (∀x ∈ Z) (∃y ∈ Z) [x + y 6= 0]
For each integer x, there exists an integer y

such that x + y 6= 0.

Symbolic Form English Form

Statement (∀x ∈ Z) (∃y ∈ Z) [x + y = 0]
For each integer x, there is an integer y

such that x + y = 0.

Negation (∃x ∈ Z) (∀y ∈ Z) [x + y 6= 0]
There is an integer x such that

for each integer y, we have x + y 6= 0.

Ex 2. What about interchange the order of two mixed quantifiers? circle one: yes or no
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Ex 1. Read the Symbolically Write Guidelines, which are posted on the course Handout page.
Below are variants of statements from previous Exercises. For each Exercise:

O. Symbolically write (using quantifiers) the original statement.
Then indicate whether the original statement is true or false (no justification needed).

N. Symbolically write (using quantifiers) a
:::::
useful negation of the original statement. Box your answer.

Then indicate whether the negation of the original statement is true or false (no justification needed).

1.1. If m is an odd integer, then 5m + 6 is an even integer. ≈ER1.2.4b
p27

1.2. If m and n are odd integers, then mn + 7 is an even integer. ER1.2.4c

p27I.e., The sum of 7 and the product of 2 odd integers is an even integer.

1.3. If a, b, and c are integers, then ab2 + a3c4 + a5b6c7 + a100b101c102 is an odd integer. ≈ER1.2.7a
p28
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