Four definitions（from number theory）used in the homework exercises．
Def．A $p \in \mathbb{N}$ is prime provided $p \neq 1$ and the only natural numbers that are factors of $p$ are： 1 and $p$ ． Def．A $c \in \mathbb{N}$ is composite provided $c \neq 1$ and $c$ is not a prime number．
$\triangleright$ ．The number 1 is neither prime nor composite．In Math 546 you will learn 1 is a unit．
Def．An integer $n$ is a multiple of $\mathbf{3}$ provided：$(\exists k \in \mathbb{Z})[n=3 k]$ ．
Def．A natural number $n$ is a perfect square provided：$(\exists k \in \mathbb{N})\left[n=k^{2}\right]$ ．
Def．The phrase for all（or its equivalents）is a universal quantifier and is denoted by $\forall$ ．
The phrase there exists（or its equivalents）is an existential quantifier and is denoted by $\exists$ ．
Rmk．The symbol $\exists$ ！reads there exists a unique．
NotInBk
$\langle$ So $\exists$ ！means there exitsts one and only one．Compare to $\exists$ ，which means there exists at least one．〉
Rmk．Priority／precedence when parentheses are excluded：$\forall$ and $\exists$ and $\exists$ ！have equal priority and NotInBk come after the logical connective symbols：$\sim$（high，so do first）$, \wedge, \vee, \Rightarrow, \Leftrightarrow$（low，so do last）．

## Statements with one quantifer

－Example／Terminology of statement with one qualifier．


Let $P(x)$ be an open sentence of the variable $x$ from the universe $U$ ．

| a statement involving | often has the forms | the statement is true <br> provided |
| :---: | :---: | :---: |
| universal quantifier <br> $(\forall x \in U)[P(x)]$ | For all $x \in U, P(x)$. <br> For every $x \in U, P(x)$. | $P(x)$ is true <br> for all $x \in U$. |
| existential quantifier <br> $(\exists x \in U)[P(x)]$ | There exists an $x \in U, P(x)$. <br> There is an $x \in U$ <br> such that that $P(x)$. | $P(x)$ is true <br> sur at least one $x \in U$. |
| $(\exists!x \in U)[P(x)]$ | There exists a unique $x \in U$ such that $P(x)$. | $P(x)$ is true <br> for precisely one <br> （and only one）$x \in U$. |

？．Where does the pharse such that appear in the above chart？
Def．A counterexample to a statement is an example that shows the statement is false．
So a counterexample to a statement of the form $(\forall x \in U)[P(x)]$ is an example that shows $(\forall x \in U)[P(x)]$ is false；more specifically，an example／specific－element／constant $c \in U$ for which $P(c)$ is false．
＜So to show a statement is false，we can find a counterexample to the statement．
To show a statement is true，we prove the statement．＞
Exo．Review our Symbolically Write Guidelines．〈either click the blue link or see next page〉
Exi．O．Do Example 1 part O．〈The O is for original（statement）〉．〈see last page〉
Thm．Negations of Quantified Statements．For an open sentence $P(x)$ ，

$$
\begin{aligned}
\sim\{(\forall x \in U)[P(x)]\} & \equiv(\exists x \in U)[\sim P(x)] \\
\sim\{(\exists x \in U)[P(x)]\} & \equiv(\forall x \in U)[\sim P(x)]
\end{aligned}
$$

Ex1．N．Do Example 1 part N．〈The N is for negation（of the original statement）$\rangle$ ．〈see last page〉

Henceforth，when asked to symbolically write a statement follow the below（unless otherwise stated）．
（1）If a statement is a quantified open sentence，then use needed quantifier（s）（e．g．：$\forall, \exists, \exists$ ！）．

## Recall

－$\forall$ reads for alll
－$\exists$ reads there exists
－$\exists$ ！reads there exists a unique．
（2）Use logical connectives symbols（e．g．：$\sim, \wedge, \vee, \Longrightarrow, \Longleftrightarrow$ ）instead of the English words．
（3）Within an open sentence，you can use English words that are not logical connectives words．
E．g．，within your open sentence，one can write：＂$x$ is even＂．
Beware：＂$x$ and $y$ are odd＂should be expressed as＂$x$ is odd $\wedge y$ is odd＂．
（4）Within an open sentence，you can use math symbols that are not logical connectives．
So you may use，e．g．：$x<\sqrt{2}, x=y, x+y=17, a \mid b, a \equiv b(\bmod n), \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$ ．
（5）Symbolically write the statement as it is stated（rather than something logically equivalent）．
For example，the statement
if a real number is larger than 3 ，then its square is larger than 9
can be symbolically written as

$$
\begin{equation*}
(\forall x \in \mathbb{R})\left[x>3 \Longrightarrow x^{2}>9\right] . \tag{yes}
\end{equation*}
$$

The statement in（1）is formulated as in（yes）so symbolically write（1）as（yes）．
Do NOT symbolically write the statement in（1）as

$$
\begin{equation*}
(\forall x \in \mathbb{R})\left[x^{2} \leq 9 \Longrightarrow x \leq 3\right] \tag{no}
\end{equation*}
$$

since（no）is not as（1）is formulated．Do note 〈will help you later〉 that the statement in（yes） is logically equivanlent to the statement in（no）〈since $[P \Longrightarrow Q] \equiv[(\sim Q) \Longrightarrow(\sim P)]$ ，think contrapositive）；thus，if you need to prove the statement in（1），then you can prove（yes） or（no）〈choice is yours when proving〉．

## Statements with 2 Like Quantifiers

two $\forall$ or two $\exists$

- As we saw in Example 1, we can interchange two $\forall$ in a row. More specifically, let $R(x, y)$ for an open sentence in the variables $x$ in universe $U_{1}$ and $y$ in unviverse $U_{2}$. Then

$$
\begin{equation*}
\left[\left(\forall x \in U_{1}\right)\left(\forall y \in U_{2}\right)[R(x, y)]\right] \equiv\left[\left(\forall y \in U_{2}\right)\left(\forall x \in U_{1}\right)[R(x, y)]\right] \tag{1}
\end{equation*}
$$

Taking the negation of both sides of (1) gives (the un-useful negations)

$$
\begin{equation*}
\sim\left[\left(\forall x \in U_{1}\right)\left(\forall y \in U_{2}\right)[R(x, y)]\right] \equiv \sim\left[\left(\forall y \in U_{2}\right)\left(\forall x \in U_{1}\right)[R(x, y)]\right] \tag{2}
\end{equation*}
$$

Cleaning up the un-useful negations in (2) gives

$$
\begin{equation*}
\left[\left(\exists x \in U_{1}\right)\left(\exists y \in U_{2}\right)[\sim R(x, y)]\right] \equiv\left[\left(\exists y \in U_{2}\right)\left(\exists x \in U_{1}\right)[\sim R(x, y)]\right] \tag{3}
\end{equation*}
$$

Denote the open sentence $\sim R(x, y)$ by the open sentence $S(x, y)$ to see that (3) gives

$$
\begin{equation*}
\left[\left(\exists x \in U_{1}\right)\left(\exists y \in U_{2}\right)[S(x, y)]\right] \equiv\left[\left(\exists y \in U_{2}\right)\left(\exists x \in U_{1}\right)[S(x, y)]\right] \tag{4}
\end{equation*}
$$

So we can also interchange two $\exists$ in a row, as seen by (4)
〔. Lesson Learned. We can interchange/switch the order of 2 like/same quantifiers in a row !!!!
?. Question. What if we have two mixed quantifiers, i.e. one $\exists$ and one $\forall$ ?
Can we still interchange the order of the quantifiers? We will find out in the next example.

| Statements with $2 \underset{\text { and }}{\text { Mixed }}$ Quantifiers |
| :---: |
| one $\forall$ |


|  | Symbolic Form | English Form |
| :--- | :---: | :---: |
| Statement | $(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x+y=0]$ | There exists an integer $x$ such that <br> for each integer $y$, we have $x+y=0$. |
| Negation | $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})[x+y \neq 0]$ | For each integer $x$, there exists an integer $y$ <br> such that $x+y \neq 0$. |


|  | Symbolic Form | English Form |
| :--- | :---: | :---: |
| Statement | $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})[x+y=0]$ | For each integer $x$, there is an integer $y$ <br> such that $x+y=0$. |
| Negation | $(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x+y \neq 0]$ | There is an integer $x$ such that <br> for each integer $y$, we have $x+y \neq 0$. |

Ex 2. What about interchange the order of two mixed quantifiers? circle one: yes or no

Ex 1. Read the Symbolically Write Guidelines, which are posted on the course Handout page.
Below are variants of statements from previous Exercises. For each Exercise:
O. Symbolically write (using quantifiers) the original statement.

Then indicate whether the original statement is true or false (no justification needed).
N. Symbolically write (using quantifiers) a useful negation of the original statement. Box your answer.

Then indicate whether the negation of the original statement is true or false (no justification needed).
1.1. If $m$ is an odd integer, then $5 m+6$ is an even integer.
1.2. If $m$ and $n$ are odd integers, then $m n+7$ is an even integer. I.e., The sum of 7 and the product of 2 odd integers is an even integer.
1.3. If $a, b$, and $c$ are integers, then $a b^{2}+a^{3} c^{4}+a^{5} b^{6} c^{7}+a^{100} b^{101} c^{102}$ is an odd integer.

ER1.2.4c
p27
$\approx \mathrm{ER} 1.2 .7 \mathrm{a}$ p28

