Review

- **Def.** Two statements \widetilde{P} and \widetilde{Q} are (logically) equivalent provided they have the same truth value §2.2 for each possible combinations of truth values for all the atoms appearing in \widetilde{P} and \widetilde{Q} . p43 We denote \widetilde{P} is (logically) equivalent to \widetilde{Q} (i.e., \widetilde{P} and \widetilde{Q} are (logically) equivalent) by: $\widetilde{P} \equiv \widetilde{Q}$. Note, \equiv is used between statements while = is used between numbers.
- **Def.** The converse of the conditional statement $P \Rightarrow Q$ is the conditional statement $Q \Rightarrow P$. p44
 - The contrapositive of the conditional statement $P \Rightarrow Q$ is the condition statement $(\sim Q) \Rightarrow (\sim P)$.
 - **Rmk**. We have already seen that: $[P \Rightarrow Q] \neq [Q \Rightarrow P]$ but $[P \Rightarrow Q] \equiv [(\sim Q) \Rightarrow (\sim P)]$.
- **Def.** A negation (also called denial) of a statement P is $\sim P$.
- **Recall.** The priority of connectives is: \sim (high, so do first), \land , \lor , \Rightarrow , \Leftrightarrow (low, so do last). So $\sim P \lor \sim Q$ is an abbreviation for $(\sim P) \lor (\sim Q)$.

Important Logical Equivalencies

Theoremm 2.8. Let P, Q, and R be statements.

Double Negation:

$$[\sim (\sim P)] \equiv P.$$
⁽¹⁾

Biconditional Statement:

$$[P \Leftrightarrow Q] \equiv [(P \Rightarrow Q) \land (Q \Rightarrow P)].$$
⁽²⁾

De Morgans Laws:

$$[\sim (P \land Q)] \equiv [(\sim P) \lor (\sim Q)]$$
(3)

$$[\sim (P \lor Q)] \equiv [(\sim P) \land (\sim Q)].$$
⁽⁴⁾

Distributive Laws:

$$[P \lor (Q \land R)] \equiv [(P \lor Q) \land (P \lor R)]$$
(5)

$$[P \wedge (Q \vee R)] \equiv [(P \wedge Q) \vee (P \wedge R)].$$
(6)

Conditional Statements:

$$[P \Rightarrow Q] \equiv [(\sim Q) \Rightarrow (\sim P)] \qquad (\text{contrapositive}) \qquad (7)$$
$$[P \Rightarrow Q] \equiv [(\sim P) \lor Q] \qquad (\text{how do you keep a promise?}) \qquad (8)$$
$$\sim (P \Rightarrow Q)] \equiv [P \land (\sim Q)] \qquad (\text{how do you break a promise?}) \qquad (9)$$
$$[\sim (P \land Q)] \equiv [P \Rightarrow (\sim Q)] \qquad (\text{not in book}) \qquad (10)$$

Conditionals with Disjunctions:

$$[(P \lor Q) \Rightarrow R] \equiv [(P \Rightarrow R) \land (Q \Rightarrow R)]$$
(11)

$$[P \Rightarrow (Q \lor R)] \equiv [(P \land (\sim Q)) \Rightarrow R].$$
(12)

p33

Thm 2.8