An Evaluation of Proofs Exercise

Conjecture B. For all real numbers x and y, if $x \neq y$, x > 0, and y > 0, then

$$\frac{x}{y} + \frac{y}{x} > 2.$$

Proposed Proof. Since x and y are strictly positive real numbers, xy is strictly positive and we can multiply both sides of the inequality by xy to obtain

$$\left(\frac{x}{y} + \frac{y}{x}\right) \cdot xy > 2 \cdot xy$$
$$x^2 + y^2 > 2xy.$$

By combining all terms on the left side of the inequality, we see that $x^2 - 2xy + y^2 > 0$ and then by factoring the left side, we obtain $(x - y)^2 > 0$. Since $x \neq y$, $(x - y) \neq 0$ and so $(x - y)^2 > 0$. This proves that if $x \neq y$, x > 0, and y > 0, then $\frac{x}{y} + \frac{y}{x} > 2$.

.....

Optional Thinking Land Space

Symbolically:

$$(\forall x \in \mathbb{R}) \ (\forall y \in \mathbb{R}) \ \left[\ (x \neq y \ \land \ x > 0 \ \land \ y > 0) \implies \frac{x}{y} + \frac{y}{x} > 2 \ \right].$$