Prof. Girardi Class Example ER 3.1.19b, p101

An FEvaluation of Proofs Exercise

Conjecture B. For all real numbers x and y, if x # y, > 0, and y > 0, then
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Proposed Proof. Since x and y are strictly positive real numbers, xy is strictly positive and we can

multiply both sides of the inequality by xy to obtain

x
(—+g)~xy > 2-xy
y

o2+ > 2ay.
By combining all terms on the left side of the inequality, we see that 22 — 2zy + y? > 0 and then
by factoring the left side, we obtain (z —y)® > 0. Since z # vy, (x —y) # 0 and so (z —y)* > 0.

This proves that if x # y, z > 0, and y > 0, then f + J > 2. U
y
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Symbolically:

(Vz € R) (Vy € R) [(m;«éy ANz>0 A y>0) = E—i—%>2
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