Ch. 1: Intro. To Writing Proofs

§1.1: Statements & Conditional Statements, §1.2: Constructing Direct Proofs, §1.3: Ch. 1 Summary

- A statement is a declarative sentence that is either true or false but not both. §1.1 Def. p1⊳. A statement is sometimes called a proposition, but we will avoid using the word proposition for
- SC1.1.1 statement since the word proposition has a more common different use in math [cf. §3.3,p86].
- A conditional statement is a statement that can be written in the form "If P then Q," where $\S{1.1}$ Def. P and Q are statements. For a conditional statement $P \Rightarrow Q$, the P is called the hypothesis (or p5antecedent) and Q is called the **conclusion** (or consequent).
 - Other terms for conditional statement: implication, if-then.
- **Truth Table** for a conditional statement $P \Rightarrow Q$. \triangleright .

		•	
line	P	Q	$P \Rightarrow Q$
1	Т	Т	Т
2	Т	F	F
3	F	Т	Т
4	F	F	Т

• Let's watch Screencast 1.1.4. (Screencast x.y.z is for Chapter x Section y and is the z^{th} screencast for x.y.)

- Take-aways from ScreenCast 1.1.4:
 - Think of a conditional statement as a promise.
 - $\circ P \Rightarrow Q$ is false if and only if you break your promise.

 \triangleright .

Number Systems			
English	symbol	other notation	
real numbers	\mathbb{R}	$(-\infty,\infty)$	
natural numbers	\mathbb{N}	$\{1, 2, 3, 4, \ldots\}$	
integers	Z	$\{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} \stackrel{\text{or}}{=} \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \dots\}$	
rational numbers	Q	$\left\{ \frac{a}{b} \colon a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\} \stackrel{\text{easier}}{=} \left\{ \frac{a}{b} \colon a \in \mathbb{Z} \text{ and } b \in \mathbb{N} \right\}$	
irrational numbers	$\mathbb{R} \setminus \mathbb{Q}$	$\{x \in \mathbb{R} \colon x \notin \mathbb{Q}\}$	

In $\mathbb{R} \setminus \mathbb{Q}$, the symbol \setminus is <u>set minus</u> (i.e., set take away) and is not a divides sign (as in 1/2 = 0.5). ⊳.

Def.: a set is **closed under an operation** provided performing that operation on members of the \triangleright . §1.1 set always produces a member of that set. Examples of operations on the set of natural numbers N: p10

(+) the natural numbers are closed under addition since if $x \in \mathbb{N}$ and $y \in \mathbb{N}$, then $x + y \in \mathbb{N}$

(-) the set \mathbb{N} is not closed under subtraction since $1 \in \mathbb{N}$ and $17 \in \mathbb{N}$ but $1 - 17 = -16 \notin \mathbb{N}$.

Important Definitions

Def.	An integer a is an even integer provided that there exists an $k \in \mathbb{Z}$ such that $a = 2k$. So $a \in \mathbb{Z}$ is even provided $(\exists k \in \mathbb{Z}) \ [a = 2k]$.	$\S{1.2}$ p15	
Def.	An integer a is an odd integer provided there exists an $k \in \mathbb{Z}$ such that $a = 2k + 1$. So $a \in \mathbb{Z}$ is odd provided $(\exists k \in \mathbb{Z}) \ [a = 2k + 1]$.	§1.2 p15	
Rmk.	Each integer is either even or odd (but not both), as shown on the next page (a corollary to the Division Algorithm).		
Def.	A mathematical proof is a convincing argument (within the accepted standards of the mathematical community) that a certain mathematical statement is necessarily true.	§1.2 p22	
Def.	A triple (a, b, c) is a Pythagorean Triple provided $a, b, c \in \mathbb{N}$ with $a < b < c$ and $a^2 + b^2 = c^2$. (Pythagorean Triple (a, b, c) are used often in homework problems throughout this book.)		
	Important Theorems and Results		
ER1.2.2a.	Lemma SEE . The sum of two even integers is an even integer.	$\S{1.2}$	
ER1.2.2b.	Lemma SEO. The sum of an even integer and an odd integer is an odd integer.	p27	
ER1.2.2c.	Lemma SOO. The sum of two odd integers is an even integer.		
ER1.2.3a.	Lemma PEA. The product of an even integer and any integer is an even integer.	$\S{1.2}$	
Thm1.8.	Lemma POO . The product of two odd integers is an odd integer.	p27	

- §1.2 After we show these results they will be considered *Previously Shown Results*. p21
 - ER denotes Exercise. Thm denotes Theorem. Ο.

Division Algorithm

	Write $a \in \mathbb{Z}$ as $a = 2$ ($q) + r$ where the quotient $q \in$	\mathbb{Z} and the remains	inder $r \in \{0, 1\}$.
a	$\frac{a}{2}$	$a = 2\left(q\right) + r$	quotient $q \in \mathbb{Z}$	remainder $r \in \{0, 1\}$
5	$\frac{5}{2} = 2\frac{1}{2} = 2 + \frac{1}{2}$	5 = 2(2) + 1	2	1
4	$\frac{4}{2} = 2\frac{0}{2} = 2 + \frac{0}{2}$	4 = 2(2) + 0	2	0
3	$\frac{3}{2} = 1\frac{1}{2} = 1 + \frac{1}{2}$	3 = 2(1) + 1	1	1
2	$\frac{2}{2} = 1\frac{0}{2} = 1 + \frac{0}{2}$	2 = 2(1) + 0	1	0
1	$\frac{1}{2} = 0 + \frac{1}{2}$	1 = 2(0) + 1	0	1
0	$\frac{0}{2} = 0 + \frac{0}{2}$	$0 = 2\left(0\right) + 0$	0	0
-1	when $a < 0$ and $n > 2$	-1 = 2(-1) + 1	-1	1
-2	this intuition breaks down	-2 = 2(-1) + 0	-1	0
-3		-3 = 2(-2) + 1	-2	1

Ex. Division Algorithm in action: a chart examining dividing an integer a by the natural number $2 = n \in \mathbb{N}$.

think. Divide $a \in \mathbb{N} \langle \text{so } a > 0 \rangle$ by $n \in \mathbb{N}$ to get a quotient is $q \in \mathbb{Z}$ and remainder is $r \in \mathbb{Z}$ with $0 \le r < n$. $n\sqrt{-\frac{q}{a}}$

Thm. Division Algorithm. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q and r such that a = nq + r and $0 \le r < n$. (1)

÷

One says: "when we divide the a by n, the **quotient** is q and the **remainder** is r."

▷. Division Algorithm symbolically: $(\forall n \in \mathbb{N})$ $(\forall a \in \mathbb{Z})$ $(\exists ! q \in \mathbb{Z})$ $(\exists ! r \in \mathbb{Z})$ $[a = nq + r \land 0 \leq r < n].$

Rmk. The equality in (1) can be written as $\frac{a}{n} = q + \frac{r}{n}$ (but we do not write like this in our proofs). §3.5 p144

cor. Corollary to Division Algorithm. If $a \in \mathbb{Z}$, then:

- (0) either there exists $q \in \mathbb{Z}$ such that a = 2q + 0
- (1) or there exists $q \in \mathbb{Z}$ such that a = 2q + 1

but not both. (Why? Apply the Division Algorithm, taking n = 2 and so r is either 0 or 1.)

cor. Another Corollary to Division Algorithm. Each integer is either even or odd (but not both).

(Why? Let $a \in \mathbb{Z}$. Now use the previous Corollary to conclude that a is either even or odd (but not both).)

Some Math Terninology	$\S{3.1}$
	p85-86

- 1. A proof in mathematics is a convincing argument that some mathematical statement is true. $\begin{cases} 1.2 \\ \$1.2 \\ \$1.2 \end{cases}$ (Proof is a noun while prove is a verb. So we prove a true stament by providing a proof of the statement.) p^{22}
- 2. A definition is simply an agreement as to the meaning of a particular term. $\langle e.g., even integer \rangle$
- 3. There are undefined terms in math. <Simply put, we must start somewhere. E.g., in Euclidean Geometry: point&line.>
- 4. An **axiom** is a mathematical statement that is accepted without proof.
- 5. A lemma is a true statement that was proven mainly to help in the proof of some theorem.
- 6. A theorem is a true mathematical statement for which we have a proof. (*Theorem* is abbreviated by *Thm.*)
- 7. A proposition is a *small theorem*. (this def. of proposition is more common than using prop. to mean statement)
- 8. A corollary is a (small) thm. that is easily proven once some other (bigger) thm. has been proven.
- 9. A conjecture is a statement that we believe is plausible (but we do not have a proof for it ... yet).

<To show a conjecture is true, we prove the conjecture.

To show a conjecture is false, you can find a counterexample to the conjecture.>

Definitions: moving from high school level to university level

Divides

Def. A nonzero integer *n* divides an integer *b*, denoted n|b, provided that $(\exists k \in \mathbb{Z}) [nk = b]$. **Rmk.** Note n|b if and only if when we apply Division Algorithm and divide *b* by $n \langle \text{to get } b = nq + r \rangle$ the remainder is 0.

Set Containment

Defs. Let A and B be two sets.

- 1. The sets A and B are equal when they have precisely the same elements. If A and B are equal, then we write A = B. If A and B are not equal, then we write $A \neq B$.
- 2. The set A is a subset B provided that each element of A is an element of B. If A is a subset of B, then we write $A \subseteq B$ and also say A is contained in B or say B contains A. When A is not a subset of B, we write $A \not\subseteq B$.
- **Rmk.** $[A \subseteq B] \stackrel{\text{by def.}}{\longleftrightarrow} [x \in A \implies x \in B]$ $[B \subseteq A] \stackrel{\text{by def.}}{\longleftrightarrow} [x \in B \implies x \in A]$ $[A = B] \stackrel{\text{by def.}}{\longleftrightarrow} [x \in A \iff x \in B] \dots \text{ so we get } \dots [A = B] \stackrel{\text{so get}}{\iff} [(A \subseteq B) \land (B \subseteq A)]$

Def. When a set contains no elements, we say that the set is the **empty set**. In mathematics, the empty set is usually designated by the symbol \emptyset . (The symbol \emptyset is the last letter in the Danish-Norwegian alphabet and is LaTex-ed \emptyset.)

Def. Let X and Y be sets.

1. The **Cartesian Product** of X and Y, denoted $X \times Y$, is the set

$$X \times Y = \{ (x, y) : x \in X \text{ and } y \in Y \}.$$

In $X \times Y$:

- the point (x, y) is an ordered pair, with first coordinate x and second coordinate y.
- $(x_1, y_1) = (x_2, y_2)$ if and only if $[x_1 = x_2 \text{ and } y_1 = y_2].$
- 2. Frequently $X \times X$ is denoted X^2 . So $X^2 = X \times X = \{ (a, b) : a \in X \text{ and } b \in Y \}.$
 - Function
- **Def.** A function f from the set X to the set Y, denoted $f: X \to Y$, is a rule that associated with each selement $x \in X$ exactly one element $y \in Y$.
- **Defs.** Let $f: X \to Y$ be a function from the set X to the set Y.
 - o. The **domain** of the function f is the set X. Denote: X = dom(f).
 - o. The **codomain** of the function f is the set Y. Denote: Y = codom(f).
 - o. If $x \in X$, then f associates to x exactly one $y \in Y$, which is denoted f(x) and called the **image of** x **under** f.
 - o. The $(x, y) \in X \times Y$ and f(x) = y, then x is the **preimage of** y **under** f.
 - •. The range of f, denoted range (f), is the set defined by range $(f) \stackrel{\text{def}}{=} \{f(x) \in Y : x \in X\} \stackrel{\text{note}}{\subseteq} Y$.
 - \circ . The function f is **injective** (also called one-to-one) provided

for all
$$x_1, x_2 \in X$$
, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Symbolically: $(\forall (x_1, x_2) \in X^2) [f(x_1) = f(x_2) \implies x_1 = x_2].$

 \circ . The function f is **surjective** (also called onto) provided

for all
$$y \in Y$$
, there exists $x \in X$ such that $f(x) = y$.

Symbolically: ($\forall y \in Y$) ($\exists x \in X$) [f(x) = y].

Note, f is surjetive if and only if codom(f) = range(f).

o. The function f is **bijective** provided f is both injective and surjective.

06g

§5.4 p256

§6.1

§3.1 p82

 $\S{2.3}$

p55