ER 1.2.4c If m and n are oft integers, then $m n+7$ is an even intger.
Instructions Prove using definition of even and odd.
Pret Let m and n be odd integers. We will show that $m n+7$ is even
Since m and n are odtintegers, there exists $k_{m}, k_{n} \in \mathbb{Z}$ sothat
and

$$
\begin{align*}
& m=2 k_{m}+1 \tag{1}\\
& n=2 k_{n}+1 \tag{2}
\end{align*}
$$

By (1) and (2), followed by alegepra, we get

$$
\begin{aligned}
m n+7 & =\left(2 k_{m}+1\right)\left(2 k_{n}+1\right)+7 \\
& =4 k_{m} k_{n}+2 k_{m}+2 k_{n}+1+7 \\
& =4 k_{n} k_{n}+2 k_{m}+2 k_{n}+8 \\
& =2\left(2 k_{m} k_{n}+k_{m}+k_{n}+4\right) \\
& =2 q
\end{aligned}
$$

where $q=2 k_{m} k_{n}+k_{n}+k_{n}+4$. Since $k_{m}, k_{n} \varepsilon \mathbb{Z}$ and the \mathbb{Z} is closed under multiplication and addition, $q \in \mathbb{Z}$. Thus $m n+7=2 q$ for $q \& \mathbb{\mathbb { O }}$. So, defintion of even, $m n+7$ is even.

We have just shown that of m and n are odd) integers, then $m u+7$ is wen.

Not correct introductory \notin
Proet Let m and n be odd integers. We will that if m and n are odd integers, then $m n+7$ is an even int eger.
\rightarrow Prof G calls this mistake; IS $\neq I F$.
Easy fix (well on LaTex) for this?

Proof We will show that if m and n are odd integers, then $m n+7$ is an even integer. Let m and n be odd integers.

