Theorem 1. Let $(x, y) \in \mathbb{R}^{2}$. If $x<-4$ and $y>2$, then the distance between (x, y) and $(1,-2)$ is strictly larger than 6 .

Instructions. Prove Thm. 1 algebraically 〈using (in)equalities〉. Do not use calculus. Do not argue geometrically but rather use geometric idea to form your Thinking Land.

Recall. The distance between $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, commonly denoted $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$, is

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}} .
$$

Symbolically: $\quad\left(\forall(x, y) \in \mathbb{R}^{2}\right)[(y<-4 \wedge y>2) \Longrightarrow d((x, y),(1,-2))>6]$
Thinking Land. Let $(x, y) \in \mathbb{R}^{2}$. Given $x<-4$ and $y>2$. WTS: $\sqrt{|x-1|^{2}+|y+2|^{2}}>6$.

Proof. Let $(x, y) \in \mathbb{R}^{2}$ with $x<-4$ and $y>2$. Denote the distance between the two points $(x, y) \in \mathbb{R}^{2}$ and $(1,-2) \in \mathbb{R}^{2}$ by $d((x, y),(1,-2))$ We shall show that

$$
d((x, y),(1,-2))>6 .
$$

Recall that

$$
\begin{equation*}
d((x, y),(1,-2))=\sqrt{|x-1|^{2}+|y+2|^{2}} \tag{1}
\end{equation*}
$$

Since $x<-4$, we have that $x-1<-5$ and so $\langle | x-1 \mid>5$ so \rangle

$$
\begin{equation*}
|x-1|^{2}>25 \tag{2}
\end{equation*}
$$

Since $y>2$, we have that $y+2>4$ and so $\quad\langle | y+2 \mid>4$ so \rangle

$$
\begin{equation*}
|y+2|^{2}>16 \tag{3}
\end{equation*}
$$

Thus equation (1), followed by inequalites (2) and (3) give

$$
\begin{aligned}
d((x, y),(1,-2)) & =\sqrt{|x-1|^{2}+|y+2|^{2}} \\
& >\sqrt{25+16} \\
& =\sqrt{41} \\
& >\sqrt{36} \\
& =6
\end{aligned}
$$

which gives that $d((x, y),(1,-2))>6$, which is what we needed to show.
We have just shown that if $x<-4$ and $y>2$, then $d((x, y),(1,-2))>6$.

