Theorem 1. Let $(x, y) \in \mathbb{R}^2$. If x < -4 and y > 2, then the distance between (x, y) and (1, -2) is strictly larger than 6.

Instructions. Prove Thm. 1 algebraically (using (in)equalities). Do **not** use calculus. Do not argue geometrically but rather use geometric idea to form your Thinking Land.

Recall. The distance between $(x_1, y_1) \in \mathbb{R}^2$ and $(x_2, y_2) \in \mathbb{R}^2$, commonly denoted $d((x_1, y_1), (x_2, y_2))$, is

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}.$$

Symbolically:

Thinking Land.

