Theorem 1. Let $(x, y) \in \mathbb{R}^{2}$. If $x<-4$ and $y>2$, then the distance between (x, y) and $(1,-2)$ is strictly larger than 6 .

Instructions. Prove Thm. 1 algebraically 〈using (in)equalities〉. Do not use calculus. Do not argue geometrically but rather use geometric idea to form your Thinking Land.

Recall. The distance between $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ and $\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, commonly denoted $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$, is

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}} .
$$

Symbolically:
Thinking Land.

