▶. Lemma POO is the book's Theorem 1.8 (p. 22).

Lemma POO. The product of two odd integers is an odd integer.

Symbolically: $(\forall x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [\ (x \text{ is odd } \land y \text{ is edd }) \implies xy \text{ is odd }]$

Proof. Let x and y be odd integers. We will show that xy is an odd integer.

Since x is an odd integer, by definition of odd integer, there exists $k_x \in \mathbb{Z}$ such that

$$x = 2k_x + 1. (1)$$

Since y is an odd integer, by definition of odd integer, there exists $k_y \in \mathbb{Z}$ such that

$$y = 2k_y + 1. (2)$$

Using (1) and (2) and then using algebra we get

$$xy = (2k_x + 1) (2k_y + 1)$$

$$= 4k_x k_y + 2k_x + 2k_y + 1$$

$$= (2_x \cdot 2 \cdot k_x k_y + 2k_x + 2k_y) + 1$$

$$= 2(2k_x k_y + k_x + k_y) + 1$$

and letting $j = 2k_x k_y + k_x + k_y$

$$= 2j + 1.$$

Note $j \in \mathbb{Z}$ since $2, k_x, k_y \in \mathbb{Z}$ and the integers are closed under multiplication and addition. We have just show xy = 2j + 1 for some $j \in \mathbb{Z}$. Thus xy is odd by definition of odd.

Theorem 1. Let $(x,y) \in \mathbb{R}^2$. If x < -4 and y > 2, then the distance between the points (x,y) and (1,-2) is strictly larger than 6.

Instructions. Prove Thm. 1 algebraically (using (in)equalities). Do **not** use calculus. Do not argue geometrically but rather use geometric idea to form your Thinking Land.

Recall. The distance between $(x_1, y_1) \in \mathbb{R}^2$ and $(x_2, y_2) \in \mathbb{R}^2$, commonly denoted $d((x_1, y_1), (x_2, y_2))$, is

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}.$$

Symbolically:
$$(\forall (x,y) \in \mathbb{R}^2) [(y < -4 \land y > 2) \implies d((x,y),(1,-2)) > 6]$$

Thinking Land. Let $(x,y) \in \mathbb{R}^2$. Given x < -4 and y > 2. WTS: $\sqrt{|x-1|^2 + |y+2|^2} > 6$.

•
$$x < -4 \implies x - 1 < -5 \implies |x - 1| > 5 \implies |x - 1|^2 > 25$$

•
$$y > 2 \implies y + 2 > 4 \implies |y + 2| > 4 \implies |y + 2|^2 > 16$$

•
$$\sqrt{|x-1|^2 + |y+2|^2} > \sqrt{25+16} = \sqrt{41} > \sqrt{36} = 6.$$

......

Proof. Let $(x,y) \in \mathbb{R}^2$ with x < -4 and y > 2. Denote the distance between the two points $(x,y) \in \mathbb{R}^2$ and $(1,-2) \in \mathbb{R}^2$ by d((x,y),(1,-2)). We shall show that

$$d((x,y),(1,-2)) > 6.$$

The distance formula gives

$$d((x,y),(1,-2)) = \sqrt{|x-1|^2 + |y+2|^2}.$$
 (1)

Since x < -4, we have that x - 1 < -5 and so |x - 1| > 5. Thus

$$|x-1|^2 > 25. (2)$$

Since y > 2, we have that y + 2 > 4 and so |y + 2| > 4. Thus

$$|y+2|^2 > 16. (3)$$

Thus equation (1), followed by inequalities (2) and (3), give

$$d((x,y),(1,-2)) = \sqrt{|x-1|^2 + |y+2|^2}$$

$$> \sqrt{25+16}$$

$$= \sqrt{41}$$

$$> \sqrt{36}$$

$$= 6.$$

Thus d((x,y),(1,-2)) > 6.

We have just shown that if $(x, y) \in \mathbb{R}^2$ with x < -4 and y > 2, then d((x, y), (1, -2)) > 6. \square