Prof. Girardi Ch 4: Strong Induction Example

Strong Induction (also called complete induction, our book calls this 224 PMI) §4.2
pl94
Fix ng € 7.
If
BASE STEP: P(ng) is true
INDUCTIVE STEP:  for each n € Z="0: [ P(j) is true for j € {ng, 1+ no,...,n} | = [ P(n+ 1) is true |
inductive\}:ypothesis inductive‘gonclusion

then P(n) is true for epz ach n € Z="0.

Theorem. Let {a,},, be the recursively defined sequence of integers

ag = 2 (].)

a; = 4 (2)

a9 — 6 (3)
and

a, = ba,—3 when n € Nandn > 3. (4)

Then a, is even for each n € Z2° = {0,1,2,3,4,...}.
Symbolically:(Vn € Z=°) [ (ag=2Aa1 =4ANaz=6A (n € N2* = q, =5a,_3)) = a, is even |
Proof. Let {a,} —, be the recurively defined sequence of integers

a0:2 s a1:4 N CL2:6

and

a, = 5a,_3 when n € N and n > 3. (RD)

We will show that a,, is even for each n € Z=° by strong induction on n.

For the base step, first let n = 0. Then a, = ay = 2, which is even. Next let n = 1 Then
a, = ay; = 4, which is even. Finally let n = 2. Then a, = as = 6, which is even. Thus ag, ay,
and as are each even. This completes the base step.

For the inductive step, fix n € N2 and assume the inductive hypothesis, which is

if j €{0,1,2,...,n} then a; even. (IH)
We will show the inductive conclusion, which is
apn11 1S even. (IC)
Since n > 2,
n+1>3
and so, by the recurive definition (RD) (the recurive definition has kicked in for n + 1 since n+1 > 3)

Un41 = OA(n+1)—3
and so
Ant1 = 5an_2 (5)
Since n € Z=? we have that 0 <n —2<mnandson —2 € {0,1,2,...,n}. Thus we can apply the
inductive hypothesis (IH) to j = n — 2 to get that

Ao IS even. (6)

Since the product of an even integer and any integer is an even integer [cf. Section 1.2 Exercise 3],
equations (5) and (6) give that a,41 is even. This completes the inductive step.

Thus the base step and the inductive step hold. So, by strong induction, the Theorem holds for
all n € Z=°. OJ
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