►

(also called complete induction, our book calls this 2nd PMI) Strong Induction $\S4.2$ p194 Fix $n_0 \in \mathbb{Z}$. If BASE STEP: $P(n_0)$ is true for each $n \in \mathbb{Z}^{\geq n_0}$: $[P(j) \text{ is true for } j \in \{n_0, 1 + n_0, \dots, n\}] \Rightarrow [P(n+1) \text{ is true }]$ inductive hypothesis INDUCTIVE STEP: then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$. **Theorem.** Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers Ex. $a_0 = 2$, $a_1 = 4$, $a_2 = 6$ and $a_n = 5a_{n-3}$ when $n \in \mathbb{N}$ and $n \ge 3$. (RD)Then a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}.$ $RD = Recursive Def. \uparrow$ Symbolically:

Thinking Land

Let's make a chart to help us understand better what is going on.

n		a_n			
0	2	(given)			
1	4	(given)			
2	6	(given)			
now the recursive definition kicks in					
3					
4					
5					
6					
7					
8					
	Do we see a pattern?				

For the Base Step, which n's do we need to check? ο.

Since in the Base Step we verified the Thm. holds up to (and including) n =____, ο.

where should we start the Induction Step? At n =.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{\quad}$. Assume the inductive hypothesis, which is

(IH)

We will show the inductive conclusion, which is

Strong Induction
Fix $n_0 \in \mathbb{Z}$.(also called complete induction, our book calls this 2nd PMI)§4.2
p194If

If

BASE STEP: INDUCTIVE STEP: $P(n_0)$ is true for each $n \in \mathbb{Z}^{\geq n_0}$: [P(j) is true for $j \in \{n_0, 1 + n_0, \dots, n\}] \Rightarrow [P(n+1)$ is true] inductive hypothesis

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Theorem. Each natural number n has a factorization as

$$n = 2^k m$$

for some k is some nonnegative integer and some odd natural number m.

▶. Written symbolically:

Thinking Land

Let's make a chart to help us understand better what is going on.

n	$n = 2^k m$ where $k \in \{0, 1, 2, 3, 4, 5, \ldots\}$ and $m \in \{1, 3, 5, 7, 9, 11, \ldots\}$		
1	1 =		
2	2 =		
3	3 =		
4	4 =		
5	5 =		
6	6 =		
7	7 =		
So if n is, then $n = \$ so $k := \ \in \mathbb{Z}^{\geq 0}$ and $m := \ with m$ an odd natural number.			
8	8 =		
10	10 =		
12	12 =		

 \circ . For the Base Step, which *n*'s do we need to check?

 \circ . Since in the <u>Base Step</u> we verified the Thm. holds up to (and including) n =____,

where should we start the Induction Step? At n =___.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{\quad}$. Assume the inductive hypothesis, which is

(IH)

We will show the inductive conclusion, which is

(IC)

To show the (IC), we will need to consider $\langle \text{the only possible} \rangle$ two cases for n: ______ and _____