Strong Induction (also called complete induction, our book calls this $2^{\text {nd }} P M I$)
Fix $n_{0} \in \mathbb{Z}$.
If
BASE STEP: $\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP: for each $n \in \mathbb{Z}^{\geq n_{0}}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$ then $P(n)$ is true for each $n \in \mathbb{Z}^{\geq n_{0}}$.

Ex. Theorem. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
\begin{equation*}
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3 \tag{RD}
\end{equation*}
$$

Then a_{n} is even for each $n \in \mathbb{Z} \geq 0 \stackrel{\text { i.e. }}{=}\{0,1,2,3,4, \ldots\} . \quad$ RD $=$ Recursive Def. \uparrow

- Symbolically:
\square
Thinking Land
Let's make a chart to help us understand better what is going on.

n	a_{n}	
0	2	(given)
1	4	(given)
2	6	(given)
3		
4		
5		
6		
7		
8		now the recursive definition kicks in

o. For the Base Step, which n's do we need to check?
-. Since in the Base Step we verified the Thm. holds up to (and including) $n=$ \qquad , where should we start the Induction Step? At $n=$ \qquad -.

So the first line in your induction step should look something line:
For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \ldots$. Assume the inductive hypothesis, which is

We will show the inductive conclusion, which is

Strong Induction (also called complete induction, our book calls this $2^{\text {nd }}$ PMI)
Fix $n_{0} \in \mathbb{Z}$.
If
BASE STEP: $\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP: for each $n \in \mathbb{Z} \geq n_{0}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$
then $P(n)$ is true for each $n \in \mathbb{Z} \geq n_{0}$.
Theorem. Each natural number n has a factorization as

$$
n=2^{k} m
$$

for some k is some nonnegative integer and some odd natural number m.

- Written symbolically:

Thinking Land

Let's make a chart to help us understand better what is going on.

n	$n=2^{k} m$ where $k \in\{0,1,2,3,4,5, \ldots\}$ and $m \in\{1,3,5,7,9,11, \ldots\}$
1	$1=$
2	$2=$
3	$3=$
4	$4=$
5	$5=$
6	$6=$
7	$7=$
So if n is \quad, \quad then $n=\ldots$ so $k:=\ldots \in \mathbb{Z}^{\geq 0}$ and $m:=\ldots$ with m an odd natural number.	
8	$8=$
10	$10=$
12	$12=$

o. For the Base Step, which n 's do we need to check?
o. Since in the Base Step we verified the Thm. holds up to (and including) $n=$ \qquad , where should we start the Induction Step? At $n=$ \qquad .

So the first line in your induction step should look something line:
For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq$ \qquad . Assume the inductive hypothesis, which is

We will show the inductive conclusion, which is

To show the (IC), we will need to consider 〈the only possible〉 two cases for n : \qquad and \qquad .

