Strong Induction (also called complete induction, our book calls this $2^{\text {nd }} \mathrm{PMI}$)
Fix $n_{0} \in \mathbb{Z}$.
If
BASE STEP: $\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP: for each $n \in \mathbb{Z}^{\geq n_{0}}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$
then $P(n)$ is true for each $n \in \mathbb{Z}^{\geq n_{0}}$.
Ex. Theorem. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3
$$

Then a_{n} is even for each $n \in \mathbb{Z} \geq 0 \stackrel{\text { i.e. }}{=}\{0,1,2,3,4, \ldots\}$.
-. Symbolically: $\left(\forall n \in \mathbb{Z}^{\geq 0}\right)$ [$\left(a_{0}=2 \wedge a_{1}=4 \wedge a_{2}=6 \wedge\left(n \in \mathbb{N} \geq 3 \Longrightarrow a_{n}=5 a_{n-3}\right)\right) \Longrightarrow a_{n}$ is even $]$ Proof. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recurively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
\begin{equation*}
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3 \tag{RD}
\end{equation*}
$$

We will show that a_{n} is even for each $n \in \mathbb{Z} \geq 0$ by strong induction on n.
For the base step, first let $n=0$. Then $a_{n}=a_{0}=2$, which is even. Next let $n=1$ Then $a_{n}=a_{1}=4$, which is even. Finally let $n=2$. Then $a_{n}=a_{2}=6$, which is even. Thus a_{0}, a_{1}, and a_{2} are each even. This completes the base step.

For the inductive step, fix $n \in \mathbb{N} \geq 2$ and assume the inductive hypothesis, which is

$$
\begin{equation*}
\text { if } j \in\{0,1,2, \ldots, n\} \text { then } a_{j} \text { even. } \tag{IH}
\end{equation*}
$$

We will show the inductive conclusion, which is

$$
\begin{equation*}
a_{n+1} \text { is even. } \tag{IC}
\end{equation*}
$$

Since $n \geq 2$,

$$
n+1 \geq 3
$$

and so, by the recurive definition (RD) 〈the recurive definition has kicked in for a_{n+1} since $\left.n+1 \geq 3\right\rangle$

$$
a_{n+1}=5 a_{(n+1)-3}
$$

and so

$$
\begin{equation*}
a_{n+1}=5 a_{n-2} \tag{1}
\end{equation*}
$$

Since $n \in \mathbb{Z}^{\geq 2}$, we know $2 \leq n$ and so

$$
0 \leq n-2 \leq n
$$

which gives $n-2 \in\{0,1,2, \ldots, n\}$. Thus we can apply the inductive hypothesis (IH) to $j=n-2$ to get

$$
\begin{equation*}
a_{n-2} \text { is even. } \tag{2}
\end{equation*}
$$

Since the product of an even integer and any integer is an even integer [cf. Section 1.2 Exercise 3], equations (1) and (2) give that a_{n+1} is even. This completes the inductive step.

Thus the base step and the inductive step hold. So, by strong induction, the Theorem holds for all $n \in \mathbb{Z}^{\geq 0}$.

Strong Induction（also called complete induction，our book calls this $2^{\text {nd }} P M I$ ）
Fix $n_{0} \in \mathbb{Z}$ ．
If
BASE STEP：$\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP：for each $n \in \mathbb{Z}^{\geq n_{0}}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$ then $P(n)$ is true for each $n \in \mathbb{Z}^{\geq n_{0}}$ ．

Theorem．Each natural number n has a factorization as

$$
n=2^{k} m
$$

for some k is some nonnegative integer and some odd natural number m ．
－．Written symbolically：$(\forall n \in \mathbb{N})\left(\exists k \in \mathbb{Z}^{\geq 0}\right)(\exists m \in \mathbb{N})$［ m is odd $\wedge n=2^{k} m$ ］．
Proof．We shall show that if $n \in \mathbb{N}$ then n can be written as

$$
\begin{equation*}
n=2^{k} m \quad \text { for some } k \in \mathbb{Z}^{\geq 0} \text { and odd natural number } m \text {. } \tag{3}
\end{equation*}
$$

by strong induction on n ．
For the base step，let $n=1$ ．Then

$$
n=1=2^{0} \cdot 1=2^{k} m
$$

where $k=0 \in \mathbb{Z}^{\geq 0}$ and $m=1 \in \mathbb{N}$ is odd．So（3）holds when $n=1$ ．This completes the base step．
For the inductive step，fix $n \in \mathbb{N}$ ．Assume the inductive hypothesis，which is

$$
\text { if } j \in\{1,2, \ldots, n\} \text { then }
$$

$$
j=2^{k_{j}} m_{j} \text { for some } k_{j} \in \mathbb{Z}^{\geq 0} \text { and odd natural number } m_{j} .
$$

We will show the inductive conclusion，which is

$$
\begin{equation*}
n+1=2^{k} m \quad \text { for some } k \in \mathbb{Z}^{\geq 0} \text { and odd natural number } m, \tag{IC}
\end{equation*}
$$

by considering 〈the only possible〉 two cases：n is even and n is odd．
For the first case，let n be an even natural number．Then $n+1$ is an odd natural numbers so

$$
n+1=2^{0}(n+1)=2^{k} m
$$

where $k=0 \in \mathbb{Z} \geq 0$ and $m=n+1$ is an odd natural number．Thus（IC）holds for the first case．
For the second case，let n be an odd natural number．Then $n+1$ is an even natural number； thus，there is $l \in \mathbb{N}$ such that

$$
\begin{equation*}
n+1=2 l \tag{4}
\end{equation*}
$$

Note that $l \in\{1,2, \ldots, n\}$ since $l \in \mathbb{N}$ and

$$
1 \leq l=\frac{n+1}{2} \leq \frac{n+n}{2}=n
$$

Thus by the inductive hypotheses（IH）〈think $j:=l\rangle$ there exists $k_{l} \in \mathbb{Z}^{\geq 0}$ and an odd natural number m_{l} such that

$$
\begin{equation*}
l=2^{k_{l}} m_{l} . \tag{5}
\end{equation*}
$$

Equations（4）and（5）give，

$$
n+1=2 l=2\left(2^{k_{l}} m_{l}\right)=\left(2^{1+k_{l}}\right)\left(m_{l}\right)=2^{k} m
$$

where $m:=m_{l}$ is an odd natural number and $k:=1+k_{l} \in \mathbb{Z}^{\geq 0}$（since $k_{l} \in \mathbb{Z}^{\geq 0}$ ）．Thus（IC）holds for the second case．This completes the inductive step．

Thus the base step and the inductive step hold．So，by strong induction，equation（1）holds for all $n \in \mathbb{N}$ ．

