Prof. Girardi (Basic) Induction Example

Induction (basic form). Let P(n) be an open sentence in the variable n € N. §4.1
pl73

If

BASE STEP: P(1) is true

INDUCTIVE STEP:  for each n € N: [ P(n) is true ] = [ P(n + 1) is true ]

-— -~
inductive hypothesis inductive conclusion

then P(n) is true for each n € N.
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Show that E - < 2 — — for each integer n.
) n
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Proof. For each n € N, let P (n) be the statement

We will show that P (n) is true for each n € N by induction on n.
For the base step, we shall show that P (n) holds when n = 1. Let n = 1. Then
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Thus P (1) is true. This finishes the base step.

For the inductive step, fix n € N. We assume the inductive hypothesis, which is (P (n) is true)

Z%gz—l. (IH)

For the inductive step, your goal is to show the inductive conclusion, which is  (i.e., P (n + 1) is true)
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n+1 n
Using the inductive hypothesis (recall > " a; = [a1 + a2 + -+ + an] + ant1 = [Z a;

i=1 i=1

+an+1) and then algebra

we get
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and by the inductive hypothesis

(look at for hint on where to go next)
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(lookatagain...havez§2—xhbutwant2§2—:z:. Well: 2—zh<2—2 & —xhg—xkgw—hg—lﬁhzm

x>0
= 2 1 1+ L
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and since n > 1 we know that n+r1 >0and 1+ n21+n > 1 and so

1
< 2 - .
- (n—l—l)

Thus hold. This completes the inductive step.

Thus, by induction, holds for each n € N. O
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