
Prof. Girardi solution Induction Examples

Ex1. Prove that
n∑

i=1

1

i2
≤ 2− 1

n
for each integer n.

WTS. (∀n ∈ N) [P (n) is true] where P (n) is the open sentence
∑n

i=1
1
i2
≤ 2− 1

n
in the variable n ∈ N.

Proof. Using basic induction on the variable n, we will show that for each n ∈ N
n∑

i=1

1

i2
≤ 2− 1

n
. (1)

For the
::::
base

:::::
step, let n = 1. Since, when n = 1,

n∑
i=1

1

i2
=

1∑
i=1

1

i2
=

1

12
= 1 and 2− 1

n
= 2− 1

1
= 2− 1 = 1,

inequality (1) holds when n = 1. This finishes the base step.
For the

:::::::::
inductive

:::::
step, fix n ∈ N. We assume the inductive hypothesis, which is 〈P (n) is true 〉

n∑
i=1

1

i2
≤ 2− 1

n
. (IH)

For the inductive step, your goal is to show the inductive conclusion, which is 〈P (n + 1) is true 〉
n+1∑
i=1

1

i2
≤ 2− 1

n + 1
. (IC)

We now have 〈 recall

n+1∑
i=1

ai = (a1 + a2 + · · ·+ an) + an+1 =

(
n∑

i=1

ai

)
+ an+1 〉

n+1∑
i=1

1

i2
=

(
n∑

i=1

1

i2

)
+

1

(n + 1)2

and by the inductive hypothesis (IH)

≤
(

2− 1

n

)
+

1

(n + 1)2

〈
:::::::
whenever

:::
do

:::
not

:::::
know

:::::
what

::
to

:::
do

::::
next,

::::::
LOOK

:::
at

::::
(IC)

:::
for

:::
hint

:::
on

:::::
where

:::
to

::
go

::::
next 〉

= 2−
[

1

n
− 1

(n + 1)2

]
= 2−

[
(n + 1)2 − n

n (n + 1)2

]

= 2−
(

1

n + 1

)[
n2 + n + 1

n (n + 1)

]
= 2−

(
1

n + 1

)[
n2 + n + 1

n2 + n

]
(inequality help: n2 +n+1 ≥ n2 +n so n2+n+1

n2+n
≥ n2+n

n2+n
so −

(
1

n+1

)
n2+n+1
n2+n

≤ −
(

1
n+1

)
n2+n
n2+n

)

≤ 2−
(

1

n + 1

)[
n2 + n

n2 + n

]
= 2−

(
1

n + 1

)
.

Thus (IC) hold. This completes the inductive step.
Thus, by induction, (1) holds for each n ∈ N. �
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Rmk. When we write an induction proof, we usally write the
:::::
Base

:::::
Step first.

However, in your Thinking Land, we usually do the
::::::::::
Inductive

:::::
Step first. Why?

Let’s say we want to show a
(
∀n ∈ Z≥5

)
[P (n) ] and our

::::::::::
inductive

:::::
step (i.e., P (n) =⇒ P (n + 1))

only works when n ≥ 7 (and our inductive step just does not work when n is 5 or 6). All is not

lost! In this situation, we need to show the
::::
base

:::::
step P (n) hold true when n is: 5, 6, and 7 .

Ex2. Prove that for n ∈ N with n ≥ 6

n3 < n! .

Proof. We shall show that for each n ∈ N≥6

n3 < n! (1)

by 〈extended/generalized 〉 induction on n.

For the base step, let n = 6. Then

n3 = 63 = 216. (2)

while

n! = 6! = 720. (3)

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number n ∈ N≥6. Assume that

n3 < n!. (IH)

We need to show that

(n + 1)3 < (n + 1)!. (IC)

We now compute:

(n + 1)! = (n + 1) [ n! ]

and by the inductive hypotheses (IH)

> (n + 1)
[
n3
]

〈Look at (IC), which holds if n3
go for

≥ (n + 1)2. Since 6 ≤ n, we
::::
know (n+1)2 ≤ (n+n)2 = (2n)2 = 4n2 ≤ 6n2 ≤ n·n2 = n3. 〉

= (n + 1) n · n2

and since n ≥ 6 ≥ 4

≥ (n + 1) 4 · n2

= (n + 1) (2n)2

= (n + 1) (n + n)2

and since n ∈ N so n ≥ 1

≥ (n + 1) (n + 1)2

= (n + 1)3 .

Thus inequality (IC) hold. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number n ∈ N≥6. �,,.
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Strong Induction (also called complete induction, our book calls this 2nd PMI) §4.2

p194Fix n0 ∈ Z.
If
base step: P (n0) is true
inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸

inductive hypothesis

⇒ [ P (n + 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

Ex3. Let {an}∞n=0 be the
:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

Prove that an is even for each n ∈ Z≥0 ı.e.
= {0, 1, 2, 3, 4, . . .}. RD = Recursive Def. ↑

I. Symbolically:(
∀n ∈ Z≥0

) [ (
a0 = 2 ∧ a1 = 4 ∧ a2 = 6 ∧

(
n ∈ N≥3 =⇒ an = 5an−3

))
=⇒ an is even

]
Thinking Land

Let’s make a chart to help us understand better what is going on.

n an

0 a0 = 2 (given)

1 a1 = 4 (given)

2 a2 = 6 (given)

now the recursive definition kicks in that an = 5an−3

3 a3 = 5a3−3 = 5a0 = 5(2) = 10

4 a4 = 5a4−3 = 5a1 = 5(4) = 20

5 a5 = 5a5−3 = 5a2 = 5(6) = 30

6 a6 = 5a6−3 = 5a3 = 5(10) = 50

7 a7 = 5a7−3 = 5a4 = 5(20) = 100

8 a8 = 5a8−3 = 5a5 = 5(30) = 150

Do we see a pattern?

◦. For the
:::::
Base

:::::
Step, which n’s do we need to check? n = 0, 1, 2 .

◦. Since in the
:::::
Base

:::::
Step we verified the Thm. holds up to (and including) n = 2 ,

where should we start the
::::::::::
Induction

::::::
Step? At n = 2 .

So the first line in your induction step should look something line:

For the inductive step, fix n ∈ N such that n ≥ 2 . Assume the inductive hypothesis, which is

if j ∈ {0, 1, 2, . . . , n} then aj even. (IH)

We will show the inductive conclusion, which is

an+1 is even. (IC)
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Strong Induction. §4.2

p194

Fix n0 ∈ Z.

If

base step: P (n0) is true

inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸
inductive hypothesis

⇒ [ P (n + 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

Ex3. Let {an}∞n=0 be the
:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

Prove that an is even for each n ∈ Z≥0 ı.e.
= {0, 1, 2, 3, 4, . . .}.

I. Symbolically:
(
∀n ∈ Z≥0

) [ (
a0 = 2 ∧ a1 = 4 ∧ a2 = 6 ∧

(
n ∈ N≥3 =⇒ an = 5an−3

))
=⇒ an is even

]
Proof. Let {an}∞n=0 be the

:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

We will show that an is even for each n ∈ Z≥0 by strong induction on n.
For the base step, first let n = 0. Then an = a0 = 2, which is even. Next let n = 1 Then

an = a1 = 4, which is even. Finally let n = 2. Then an = a2 = 6, which is even. Thus a0, a1,
and a2 are each even. This completes the base step.

For the inductive step, fix n ∈ N≥2 and assume the inductive hypothesis, which is

if j ∈ {0, 1, 2, . . . , n} then aj even. (IH)

We will show the inductive conclusion, which is

an+1 is even. (IC)

Since n ≥ 2,
n + 1 ≥ 3

and so, by the recursive definition (RD) 〈 the recurive definition has kicked in for an+1 since n + 1 ≥ 3 〉

an+1 = 5a(n+1)−3

and so
an+1 = 5an−2. (4)

Since n ∈ Z≥2, we know 2 ≤ n and so

0 ≤ n− 2 ≤ n,

which gives n− 2 ∈ {0, 1, 2, . . . , n}. Thus we can apply the inductive hypothesis (IH) to j = n− 2
to get

an−2 is even. (5)

Since the product of an even integer and any integer is an even integer (by Lemma PEA), equa-
tions (4) and (5) give that an+1 is even. This completes the inductive step.

Thus the base step and the inductive step hold. So, by strong induction, the Example holds for
all n ∈ Z≥0. �
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