Ex1．Prove that $\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}$ for each integer n ．
wts．$(\forall n \in \mathbb{N})[P(n)$ is true $]$ where $P(n)$ is the open sentence $\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}$ in the variable $n \in \mathbb{N}$ ． Proof．Using basic induction on the variable n ，we will show that for each $n \in \mathbb{N}$

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n} \tag{1}
\end{equation*}
$$

For the base step，let $n=1$ ．Since，when $n=1$ ，

$$
\sum_{i=1}^{n} \frac{1}{i^{2}}=\sum_{i=1}^{1} \frac{1}{i^{2}}=\frac{1}{1^{2}}=1 \quad \text { and } \quad 2-\frac{1}{n}=2-\frac{1}{1}=2-1=1
$$

inequality（1）holds when $n=1$ ．This finishes the base step．
For the inductive step，fix $n \in \mathbb{N}$ ．We assume the inductive hypothesis，which is $\langle P(n)$ is true \rangle

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n} \tag{IH}
\end{equation*}
$$

For the inductive step，your goal is to show the inductive conclusion，which is $\langle P(n+1)$ is true \rangle

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{1}{i^{2}} \leq 2-\frac{1}{n+1} \tag{IC}
\end{equation*}
$$

We now have〈 recall $\sum_{i=1}^{n+1} a_{i}=\left(a_{1}+a_{2}+\cdots+a_{n}\right)+a_{n+1}=\left(\sum_{i=1}^{n} a_{i}\right)+a_{n+1} \quad$ 〉

$$
\sum_{i=1}^{n+1} \frac{1}{i^{2}}=\left(\sum_{i=1}^{n} \frac{1}{i^{2}}\right)+\frac{1}{(n+1)^{2}}
$$

and by the inductive hypothesis（IH）

$$
\leq\left(2-\frac{1}{n}\right)+\frac{1}{(n+1)^{2}}
$$

〈 whenever do not know what to do next，LOOK at（IC）for hint on where to go next ，

$$
\begin{aligned}
& =2-\left[\frac{1}{n}-\frac{1}{(n+1)^{2}}\right] \\
& =2-\left[\frac{(n+1)^{2}-n}{n(n+1)^{2}}\right] \\
& =2-\left(\frac{1}{n+1}\right)\left[\frac{n^{2}+n+1}{n(n+1)}\right] \\
& =2-\left(\frac{1}{n+1}\right)\left[\frac{n^{2}+n+1}{n^{2}+n}\right]
\end{aligned}
$$

（inequality help：$n^{2}+n+1 \geq n^{2}+n$ so $\frac{n^{2}+n+1}{n^{2}+n} \geq \frac{n^{2}+n}{n^{2}+n}$ so $\left.-\left(\frac{1}{n+1}\right) \frac{n^{2}+n+1}{n^{2}+n} \square \leq-\left(\frac{1}{n+1}\right) \frac{n^{2}+n}{n^{2}+n}\right)$

$$
\begin{aligned}
& \leq 2-\left(\frac{1}{n+1}\right)\left[\frac{n^{2}+n}{n^{2}+n}\right] \\
& =2-\left(\frac{1}{n+1}\right) .
\end{aligned}
$$

Thus（IC）hold．This completes the inductive step．
Thus，by induction，（1）holds for each $n \in \mathbb{N}$ ．

Rmk．When we write an induction proof，we usally write the Base Step first．
However，in your Thinking Land，we usually do the Inductive Step first．Why？
Let＇s say we want to show a $\left(\forall n \in \mathbb{Z}^{\geq 5}\right)[P(n)]$ and our inductive step（i．e．，$\left.P(n) \Longrightarrow P(n+1)\right)$ only works when $n \geq 7$（and our inductive step just does not work when n is 5 or 6 ）．All is not lost！In this situation，we need to show the base step $P(n)$ hold true when n is： 5,6 ，and 7 ．

Ex2．Prove that for $n \in \mathbb{N}$ with $n \geq 6$

$$
n^{3}<n!
$$

Proof．We shall show that for each $n \in \mathbb{N} \geq 6$

$$
\begin{equation*}
n^{3}<n! \tag{1}
\end{equation*}
$$

by 〈extended／generalized〉 induction on n ．
For the base step，let $n=6$ ．Then

$$
\begin{equation*}
n^{3}=6^{3}=216 . \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
n!=6!=720 \tag{3}
\end{equation*}
$$

Since $216<720$ ，the inequality in（1）holds when $n=6$ ．This completes the base step．
For the inductive step，fix a natural number $n \in \mathbb{N}^{\geq 6}$ ．Assume that

$$
\begin{equation*}
n^{3}<n! \tag{IH}
\end{equation*}
$$

We need to show that

$$
\begin{equation*}
(n+1)^{3}<(n+1)! \tag{IC}
\end{equation*}
$$

We now compute：

$$
(n+1)!=(n+1)[n!]
$$

and by the inductive hypotheses（IH）

$$
>(n+1)\left[n^{3}\right]
$$

〈Look at（IC），which holds if $n^{3} \stackrel{\text { go for }}{\geq}(n+1)^{2}$ ．Since $6 \leq n$ ，we know $(n+1)^{2} \leq(n+n)^{2}=(2 n)^{2}=4 n^{2} \leq 6 n^{2} \leq n \cdot n^{2}=n^{3}$ ．

$$
=(n+1) n \cdot n^{2}
$$

and since $n \geq 6 \geq 4$

$$
\begin{aligned}
& \geq(n+1) 4 \cdot n^{2} \\
& =(n+1)(2 n)^{2} \\
& =(n+1)(n+n)^{2}
\end{aligned}
$$

and since $n \in \mathbb{N}$ so $n \geq 1$

$$
\begin{aligned}
& \geq(n+1)(n+1)^{2} \\
& =(n+1)^{3} .
\end{aligned}
$$

Thus inequality（IC）hold．This completes the inductive step．
Thus，by induction，inequality（1）holds for each natural number $n \in \mathbb{N} \geq 6$ ． \square \odot ）

Strong Induction (also called complete induction, our book calls this $2^{\text {nd }} P M I$)
Fix $n_{0} \in \mathbb{Z}$.
If
BASE STEP: $\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP: for each $n \in \mathbb{Z}^{\geq n_{0}}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$ then $P(n)$ is true for each $n \in \mathbb{Z}^{\geq n_{0}}$.

Ex3. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
\begin{equation*}
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3 \tag{RD}
\end{equation*}
$$

Prove that a_{n} is even for each $n \in \mathbb{Z} \geq 0 \stackrel{\text { 1.e. }}{=}\{0,1,2,3,4, \ldots\} . \quad R D=$ Recursive Def. \uparrow

- Symbolically:

$$
\left(\forall n \in \mathbb{Z}^{\geq 0}\right)\left[\left(a_{0}=2 \wedge a_{1}=4 \wedge a_{2}=6 \wedge\left(n \in \mathbb{N}^{\geq 3} \Longrightarrow a_{n}=5 a_{n-3}\right)\right) \Longrightarrow a_{n} \text { is even }\right]
$$

Thinking Land

Let's make a chart to help us understand better what is going on.

n	a_{n}		
0	$a_{0}=2 \quad$ (given)		
1	$a_{1}=4 \quad$ (given)		
2	$a_{2}=6 \quad$ (given)		
now the recursive definition kicks in that $\quad a_{n}=5 a_{n-3}$			
3	$a_{3}=5 a_{3-3}=5 a_{0}=5(2)=10$		
4	$a_{4}=5 a_{4-3}=5 a_{1}=5(4)=20$		
5	$a_{5}=5 a_{5-3}=5 a_{2}=5(6)=30$		
6	$a_{6}=5 a_{6-3}=5 a_{3}=5(10)=50$		
7	$a_{7}=5 a_{7-3}=5 a_{4}=5(20)=100$		
8	$a_{8}=5 a_{8-3}=5 a_{5}=5(30)=150$		
Do we see a pattern?			

o. For the Base Step, which n 's do we need to check?

$$
n=0,1,2
$$

o. Since in the Base Step we verified the Thm. holds up to (and including) $n=\underline{2}$, where should we start the Induction Step? At $n=\underline{2}$.

So the first line in your induction step should look something line:
For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{2}$. Assume the inductive hypothesis, which is

$$
\begin{equation*}
\text { if } j \in\{0,1,2, \ldots, n\} \text { then } a_{j} \text { even. } \tag{IH}
\end{equation*}
$$

We will show the inductive conclusion, which is

$$
\begin{equation*}
a_{n+1} \text { is even. } \tag{IC}
\end{equation*}
$$

Strong Induction.
Fix $n_{0} \in \mathbb{Z}$.
If
BASE STEP: $\quad P\left(n_{0}\right)$ is true
INDUCTIVE STEP: for each $n \in \mathbb{Z}^{\geq n_{0}}: \underbrace{\left[P(j) \text { is true for } j \in\left\{n_{0}, 1+n_{0}, \ldots, n\right\}\right]}_{\text {inductive hypothesis }} \Rightarrow \underbrace{[P(n+1) \text { is true }]}_{\text {inductive conclusion }}$ then $P(n)$ is true for each $n \in \mathbb{Z}^{\geq n_{0}}$.

Ex3. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
\begin{equation*}
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3 \tag{RD}
\end{equation*}
$$

Prove that a_{n} is even for each $n \in \mathbb{Z} \geq 0 \stackrel{\text { i.e. }}{=}\{0,1,2,3,4, \ldots\}$.
-. Symbolically: $\left(\forall n \in \mathbb{Z}^{\geq 0}\right)\left[\left(a_{0}=2 \wedge a_{1}=4 \wedge a_{2}=6 \wedge\left(n \in \mathbb{N}^{\geq 3} \Longrightarrow a_{n}=5 a_{n-3}\right)\right) \Longrightarrow a_{n}\right.$ is even $]$ Proof. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$
a_{0}=2 \quad, \quad a_{1}=4 \quad, \quad a_{2}=6
$$

and

$$
\begin{equation*}
a_{n}=5 a_{n-3} \quad \text { when } \quad n \in \mathbb{N} \text { and } n \geq 3 \tag{RD}
\end{equation*}
$$

We will show that a_{n} is even for each $n \in \mathbb{Z}^{\geq 0}$ by strong induction on n.
For the base step, first let $n=0$. Then $a_{n}=a_{0}=2$, which is even. Next let $n=1$ Then $a_{n}=a_{1}=4$, which is even. Finally let $n=2$. Then $a_{n}=a_{2}=6$, which is even. Thus a_{0}, a_{1}, and a_{2} are each even. This completes the base step.

For the inductive step, fix $n \in \mathbb{N} \geq^{2}$ and assume the inductive hypothesis, which is

$$
\begin{equation*}
\text { if } j \in\{0,1,2, \ldots, n\} \text { then } a_{j} \text { even. } \tag{IH}
\end{equation*}
$$

We will show the inductive conclusion, which is

$$
\begin{equation*}
a_{n+1} \text { is even. } \tag{IC}
\end{equation*}
$$

Since $n \geq 2$,

$$
n+1 \geq 3
$$

and so, by the recursive definition (RD) <the recurive definition has kicked in for a_{n+1} since $\left.n+1 \geq 3\right\rangle$

$$
a_{n+1}=5 a_{(n+1)-3}
$$

and so

$$
\begin{equation*}
a_{n+1}=5 a_{n-2} \tag{4}
\end{equation*}
$$

Since $n \in \mathbb{Z}^{\geq 2}$, we know $2 \leq n$ and so

$$
0 \leq n-2 \leq n
$$

which gives $n-2 \in\{0,1,2, \ldots, n\}$. Thus we can apply the inductive hypothesis (IH) to $j=n-2$ to get

$$
\begin{equation*}
a_{n-2} \text { is even. } \tag{5}
\end{equation*}
$$

Since the product of an even integer and any integer is an even integer (by Lemma PEA), equations (4) and (5) give that a_{n+1} is even. This completes the inductive step.

Thus the base step and the inductive step hold. So, by strong induction, the Example holds for all $n \in \mathbb{Z}^{\geq 0}$.

