solution

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.$$
(1)

Induction Examples

For the base step, let n = 1. Since, when n = 1,

$$\sum_{i=1}^{n} \frac{1}{i^2} = \sum_{i=1}^{1} \frac{1}{i^2} = \frac{1}{1^2} = 1 \qquad \text{and} \qquad 2 - \frac{1}{n} = 2 - \frac{1}{1} = 2 - 1 = 1,$$

inequality (1) holds when n = 1. This finishes the base step.

For the inductive step, fix $n \in \mathbb{N}$. We assume the inductive hypothesis, which is $\langle P(n)$ is true \rangle

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.$$
 (IH)

For the inductive step, your goal is to show the inductive conclusion, which is $\langle P(n+1) | \text{is true} \rangle$

$$\sum_{i=1}^{n+1} \frac{1}{i^2} \le 2 - \frac{1}{n+1}.$$
 (IC)

We now have $\langle \text{ recall } \sum_{i=1}^{n+1} a_i = (a_1 + a_2 + \dots + a_n) + a_{n+1} = \left(\sum_{i=1}^n a_i\right) + a_{n+1} \rangle$ $\sum_{i=1}^{n+1} \frac{1}{i^2} = \left(\sum_{i=1}^n \frac{1}{i^2}\right) + \frac{1}{(n+1)^2}$

and by the inductive hypothesis (IH)

$$\leq \left(2 - \frac{1}{n}\right) + \frac{1}{\left(n+1\right)^2}$$

 \langle whenever do not know what to do next, LOOK at (IC) for hint on where to go next \rangle

$$= 2 - \left[\frac{1}{n} - \frac{1}{(n+1)^2}\right]$$

= $2 - \left[\frac{(n+1)^2 - n}{n(n+1)^2}\right]$
= $2 - \left(\frac{1}{n+1}\right) \left[\frac{n^2 + n + 1}{n(n+1)}\right]$
= $2 - \left(\frac{1}{n+1}\right) \left[\frac{n^2 + n + 1}{n^2 + n}\right]$
 $n \ge 0$ $\frac{n^2 + n + 1}{n(n+1)} \ge \frac{n^2 + n}{n^2 + n} \ge 0$ $- \left(\frac{1}{n}\right) \frac{n^2 + n + 1}{n(n+1)} \le - \left(\frac{1}{n}\right) \frac{n^2 + n}{n^2 + n}$

(inequality help: $n^2 + n + 1 \ge n^2 + n$ so $\frac{n^2 + n + 1}{n^2 + n} \ge \frac{n^2 + n}{n^2 + n}$ so $-\left(\frac{1}{n+1}\right) \frac{n^2 + n + 1}{n^2 + n} \le -\left(\frac{1}{n+1}\right) \frac{n^2 + n}{n^2 + n}$)

$$\leq 2 - \left(\frac{1}{n+1}\right) \left[\frac{n^2 + n}{n^2 + n}\right]$$
$$= 2 - \left(\frac{1}{n+1}\right) .$$

Thus (IC) hold. This completes the inductive step. Thus, by induction, (1) holds for each $n \in \mathbb{N}$.

Rmk. When we write an induction proof, we usally write the <u>Base Step</u> first. However, in your *Thinking Land*, we usually do the <u>Inductive Step</u> first. Why? Let's say we want to show a $(\forall n \in \mathbb{Z}^{\geq 5}) [P(n)]$ and our <u>inductive step</u> (i.e., $P(n) \implies P(n+1))$ only works when $n \geq 7$ (and our inductive step just does not work when n is 5 or 6). All is not lost! In this situation, we need to show the <u>base step</u> P(n) hold true when n is: _5, 6, and 7.

solution

Ex2. Prove that for $n \in \mathbb{N}$ with $n \ge 6$

 $n^3 < n!$.

Proof. We shall show that for each $n \in \mathbb{N}^{\geq 6}$

$$n^3 < n! \tag{1}$$

by $\langle \text{extended/generalized} \rangle$ induction on n.

For the base step, let n = 6. Then

$$n^3 = 6^3 = 216. (2)$$

while

Prof. Girardi

$$n! = 6! = 720. \tag{3}$$

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number $n \in \mathbb{N}^{\geq 6}$. Assume that

$$n^3 < n!. \tag{IH}$$

We need to show that

$$(n+1)^3 < (n+1)!.$$
 (IC)

We now compute:

(n+1)! = (n+1) [n!]

and by the inductive hypotheses (IH)

 $> (n+1) \left[\begin{array}{c} n^3 \end{array} \right]$

 $\langle \text{Look at (IC)}, \text{ which holds if } n^3 \stackrel{\text{go for}}{\geq} (n+1)^2. \text{ Since } 6 \leq n, \text{ we know } (n+1)^2 \leq (n+n)^2 = (2n)^2 = 4n^2 \leq 6n^2 \leq n \cdot n^2 = n^3. \rangle$

$$= (n+1) n \cdot n^2$$

and since $n \ge 6 \ge 4$

$$\geq (n+1) \ 4 \cdot n^2$$

= (n+1) (2n)²
= (n+1) (n+n)²

and since $n \in \mathbb{N}$ so $n \ge 1$

$$\geq (n+1) (n+1)^2$$

= $(n+1)^3$.

Thus inequality (IC) hold. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number $n \in \mathbb{N}^{\geq 6}$.

 $\square \odot \odot$.

Strong Induction

 $RD = Recursive Def. \uparrow$

 $\S4.2$

p194

If

Fix $n_0 \in \mathbb{Z}$. $P(n_0)$ is true BASE STEP: for each $n \in \mathbb{Z}^{\geq n_0}$: $\underbrace{\left[\begin{array}{c}P(j) \text{ is true for } j \in \{n_0, 1+n_0, \dots, n\}\end{array}\right]}_{\text{inductive hypothesis}} \Rightarrow \underbrace{\left[\begin{array}{c}P(n+1) \text{ is true}\end{array}\right]}_{\text{inductive conclusion}}$ INDUCTIVE STEP:

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex3. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

(also called complete induction, our book calls this 2nd PMI)

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

Prove that a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}.$ Symbolically:

$$\left(\forall n \in \mathbb{Z}^{\geq 0}\right) \left[\left(a_0 = 2 \land a_1 = 4 \land a_2 = 6 \land \left(n \in \mathbb{N}^{\geq 3} \implies a_n = 5a_{n-3}\right) \right) \implies a_n \text{ is even } \right]$$

Thinking Land

Let's make a chart to help us understand better what is going on.

n	
0	$a_0 = 2$ (given)
1	$a_1 = 4$ (given)
2	$a_2 = 6$ (given)
now the recursive definition kicks in that $a_n = 5a_{n-3}$	
3	$a_3 = 5a_{3-3} = 5a_0 = 5(2) = 10$
4	$a_4 = 5a_{4-3} = 5a_1 = 5(4) = 20$
5	$a_5 = 5a_{5-3} = 5a_2 = 5(6) = 30$
6	$a_6 = 5a_{6-3} = 5a_3 = 5(10) = 50$
7	$a_7 = 5a_{7-3} = 5a_4 = 5(20) = 100$
8	$a_8 = 5a_{8-3} = 5a_5 = 5(30) = 150$
Do we see a pattern?	

For the Base Step, which n's do we need to check? ο.

n = 0, 1, 2

Since in the Base Step we verified the Thm. holds up to (and including) n = 2, ο. where should we start the Induction Step? At $n = \underline{2}$.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{2}$. Assume the inductive hypothesis, which is

if
$$j \in \{0, 1, 2, \dots, n\}$$
 then a_j even. (IH)

We will show the inductive conclusion, which is

(IC) a_{n+1} is even.

Strong Induction.

Fix $n_0 \in \mathbb{Z}$.

 $P(n_0)$ is true BASE STEP: for each $n \in \mathbb{Z}^{\geq n_0}$: $[P(j) \text{ is true for } j \in \{n_0, 1 + n_0, \dots, n\}] \Rightarrow [P(n+1) \text{ is true}]$ inductive hypothesis INDUCTIVE STEP:

solution

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex3. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

Induction Examples

§4.2 p194

Prove that a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}.$

Symbolically: $(\forall n \in \mathbb{Z}^{\geq 0})$ $[(a_0 = 2 \land a_1 = 4 \land a_2 = 6 \land (n \in \mathbb{N}^{\geq 3} \implies a_n = 5a_{n-3})) \implies a_n \text{ is even }]$ *Proof.* Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

We will show that a_n is even for each $n \in \mathbb{Z}^{\geq 0}$ by strong induction on n. For the base step, first let n = 0. Then $a_n = a_0 = 2$, which is even. Next let n = 1 Then $a_n = a_1 = 4$, which is even. Finally let n = 2. Then $a_n = a_2 = 6$, which is even. Thus a_0, a_1 , and a_2 are each even. This completes the base step.

For the inductive step, fix $n \in \mathbb{N}^{\geq 2}$ and assume the inductive hypothesis, which is

if $j \in \{0, 1, 2, ..., n\}$ then a_j even. (IH)

We will show the inductive conclusion, which is

$$a_{n+1}$$
 is even. (IC)

Since $n \geq 2$,

n + 1 > 3

and so, by the recursive definition (RD) (the recurive definition has kicked in for a_{n+1} since $n+1 \ge 3$)

$$a_{n+1} = 5a_{(n+1)-3}$$

and so

$$a_{n+1} = 5a_{n-2}.$$
 (4)

Since $n \in \mathbb{Z}^{\geq 2}$, we know $2 \leq n$ and so

0 < n - 2 < n.

which gives $n-2 \in \{0, 1, 2, ..., n\}$. Thus we can apply the inductive hypothesis (IH) to j = n-2to get

$$a_{n-2}$$
 is even. (5)

Since the product of an even integer and any integer is an even integer (by Lemma PEA), equations (4) and (5) give that a_{n+1} is even. This completes the inductive step.

Thus the base step and the inductive step hold. So, by strong induction, the Example holds for all $n \in \mathbb{Z}^{\geq 0}$.