Ex1. Prove that $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$ for each integer n.

wts. $(\forall n \in \mathbb{N}) [P(n) \text{ is true}]$ where P(n) is the open sentence $\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}$ in the variable $n \in \mathbb{N}$.

Proof. Using basic induction on the variable n, we will show that for each $n \in \mathbb{N}$

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.\tag{1}$$

For the base step, let n = 1. Since, when n = 1,

$$\sum_{i=1}^{n} \frac{1}{i^2} = \sum_{i=1}^{1} \frac{1}{i^2} = \frac{1}{1^2} = 1 \qquad \text{and} \qquad 2 - \frac{1}{n} = 2 - \frac{1}{1} = 2 - 1 = 1,$$

inequality (1) holds when n = 1. This finishes the base step.

For the inductive step, fix $n \in \mathbb{N}$. We assume the inductive hypothesis, which is $\langle P(n) | \text{is true} \rangle$

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.\tag{IH}$$

For the inductive step, your goal is to show the inductive conclusion, which is $\langle P(n+1) |$ is true

$$\sum_{i=1}^{n+1} \frac{1}{i^2} \le 2 - \frac{1}{n+1}. \tag{IC}$$

We now have $\langle \text{recall } \sum_{i=1}^{n+1} a_i = (a_1 + a_2 + \dots + a_n) + a_{n+1} = \left(\sum_{i=1}^n a_i\right) + a_{n+1} \rangle$

$$\sum_{i=1}^{n+1} \frac{1}{i^2} = \left(\sum_{i=1}^{n} \frac{1}{i^2}\right) + \frac{1}{(n+1)^2}$$

and by the inductive hypothesis (IH)

$$\leq \left(2 - \frac{1}{n}\right) + \frac{1}{\left(n+1\right)^2}$$

 \langle whenever do not know what to do next, LOOK at (IC) for hint on where to go next \rangle

=

=

=

(inequality help:
$$n^2+n+1$$
 $\boxed{\quad}$ n^2+n so $\frac{n^2+n+1}{n^2+n}$ $\boxed{\quad}$ $\frac{n^2+n}{n^2+n}$ so $-\left(\frac{1}{n+1}\right)\frac{n^2+n+1}{n^2+n}$ $\boxed{\quad}$ $-\left(\frac{1}{n+1}\right)\frac{n^2+n}{n^2+n}$)

$$\leq$$

$$= 2 - \left(\frac{1}{n+1}\right) .$$

Thus (IC) hold. This completes the inductive step. Thus, by induction, (1) holds for each $n \in \mathbb{N}$.

Rmk. When we write an induction proof, we usally write the Base Step first.

However, in your *Thinking Land*, we usually do the <u>Inductive Step first</u>. Why?

Let's say we want to show a $(\forall n \in \mathbb{Z}^{\geq 5})$ [P(n)] and our inductive step (i.e., $P(n) \implies P(n+1)$) only works when $n \geq 7$ (and our inductive step just does not work when n is 5 or 6). All is not lost! In this situation, we need to show the base step P(n) hold true when n is: ______.

Ex2. Prove that for $n \in \mathbb{N}$ with $n \geq 6$

$$n^3 < n!$$
.

Proof. We shall show that for each $n \in \mathbb{N}^{\geq 6}$

$$n^3 < n! \tag{1}$$

by $\langle \text{extended/generalized} \rangle$ induction on n.

For the base step, let n = 6. Then

$$n^3 = 6^3 = 216. (2)$$

while

$$n! = 6! = 720. (3)$$

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number $n \in \mathbb{N}^{\geq 6}$. Assume that

$$n^3 < n!. (IH)$$

We need to show that

$$(n+1)^3 < (n+1)!.$$
 (IC)

We now compute:

$$(n+1)! = (n+1) [n!]$$

and by the inductive hypotheses (IH)

$$> (n+1) [n^3]$$

 $\langle \text{Look at (IC)}, \text{ which holds if } n^3 \stackrel{\text{go for}}{\geq} (n+1)^2. \text{ Since } 6 \leq n, \text{ we } \underbrace{\text{know}}_{} (n+1)^2 \leq (n+n)^2 = (2n)^2 = 4n^2 \leq 6n^2 \leq n \cdot n^2 = n^3. \rangle$

$$= (n+1) \ n \cdot n^2$$

and since $n \ge 6 \ge 4$

$$\geq$$

=

=

and since $n \in \mathbb{N}$ so $n \ge 1$

$$\geq (n+1) (n+1)^2$$

= $(n+1)^3$.

Thus inequality (IC) hold. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number $n \in \mathbb{N}^{\geq 6}$.

Strong Induction (also called complete induction, our book calls this 2nd PMI)

§4.2 p194

Fix $n_0 \in \mathbb{Z}$.

If

BASE STEP:

 $P(n_0)$ is true

INDUCTIVE STEP: for each $n \in \mathbb{Z}$

for each
$$n \in \mathbb{Z}^{\geq n_0}$$
: $\underbrace{P(j) \text{ is true for } j \in \{n_0, 1 + n_0, \dots, n\}}_{\text{inductive hypothesis}} \Rightarrow \underbrace{P(n+1) \text{ is true}}_{\text{inductive conclusion}}$

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex3. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

Prove that a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}.$

 $RD = Recursive Def. \uparrow$

▶. Symbolically:

Thinking Land

Let's make a chart to help us understand better what is going on.

n	a_n
0	$a_0 = 2$ (given)
1	$a_1 = 4$ (given)
2	$a_2 = 6$ (given)
	now the recursive definition kicks in that $a_n = 5a_{n-3}$
3	$a_3 =$
4	$a_4 =$
5	$a_5 =$
6	$a_6 =$
7	$a_7 =$
8	$a_8 =$
Do we see a pattern?	

- For the Base Step, which n's do we need to check?
- \circ . Since in the <u>Base Step</u> we verified the Thm. holds up to (and including) $n = \underline{\hspace{1cm}}$,

where should we start the Induction Step? At n =.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{\hspace{1cm}}$. Assume the inductive hypothesis, which is

(IH)

We will show the inductive conclusion, which is

(IC)