Ex1. Prove that $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$ for each integer n.

wts. $(\forall n \in \mathbb{N}) [P(n)]$ is true where P(n) is the open sentence $\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}$ in the variable $n \in \mathbb{N}$.

Proof. Using basic induction on the variable n, we will show that for each $n \in \mathbb{N}$

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.\tag{1}$$

For the base step, let n = 1. Since, when n = 1,

$$\sum_{i=1}^{n} \frac{1}{i^2} = \sum_{i=1}^{1} \frac{1}{i^2} = \frac{1}{1^2} = 1 \qquad \text{and} \qquad 2 - \frac{1}{n} = 2 - \frac{1}{1} = 2 - 1 = 1,$$

inequality (1) holds when n = 1. This finishes the base step.

For the inductive step, fix $n \in \mathbb{N}$. We assume the inductive hypothesis, which is $\langle P(n) | \text{is true} \rangle$

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.\tag{IH}$$

For the inductive step, your goal is to show the inductive conclusion, which is $\langle P(n+1) |$ is true \rangle

$$\sum_{i=1}^{n+1} \frac{1}{i^2} \le 2 - \frac{1}{n+1}. \tag{IC}$$

We now have $\langle \text{recall } \sum_{i=1}^{n+1} a_i = (a_1 + a_2 + \dots + a_n) + a_{n+1} = \left(\sum_{i=1}^n a_i\right) + a_{n+1} \rangle$

$$\sum_{i=1}^{n+1} \frac{1}{i^2} = \left(\sum_{i=1}^{n} \frac{1}{i^2}\right) + \frac{1}{(n+1)^2}$$

and by the inductive hypothesis (IH)

$$\leq \left(2 - \frac{1}{n}\right) + \frac{1}{\left(n+1\right)^2}$$

(whenever do not know what to do next, LOOK at (IC) for hint on where to go next)

$$= 2 - \left[\frac{1}{n} - \frac{1}{(n+1)^2} \right]$$

$$= 2 - \left[\frac{(n+1)^2 - n}{n(n+1)^2} \right]$$

$$= 2 - \left(\frac{1}{n+1} \right) \left[\frac{n^2 + n + 1}{n(n+1)} \right]$$

$$= 2 - \left(\frac{1}{n+1} \right) \left[\frac{n^2 + n + 1}{n^2 + n} \right]$$

(inequality help: $n^2 + n + 1 \ge n^2 + n$ so $\frac{n^2 + n + 1}{n^2 + n} \ge \frac{n^2 + n}{n^2 + n}$ so $-\left(\frac{1}{n+1}\right) \frac{n^2 + n + 1}{n^2 + n} \le -\left(\frac{1}{n+1}\right) \frac{n^2 + n}{n^2 + n}$)

$$\leq 2 - \left(\frac{1}{n+1}\right) \left[\frac{n^2 + n}{n^2 + n}\right]$$
$$= 2 - \left(\frac{1}{n+1}\right).$$

Thus (IC) hold. This completes the inductive step.

Thus, by induction, (1) holds for each $n \in \mathbb{N}$.

Rmk. When we write an induction proof, we usally write the Base Step first.

However, in your *Thinking Land*, we usually do the Inductive Step first. Why?

Let's say we want to show a $(\forall n \in \mathbb{Z}^{\geq 5})$ [P(n)] and our inductive step (i.e., $P(n) \implies P(n+1)$) only works when $n \geq 7$ (and our inductive step just does not work when n is 5 or 6). All is not lost! In this situation, we need to show the base step P(n) hold true when n is: 5, 6, and 7.

Ex2. Prove that for $n \in \mathbb{N}$ with $n \geq 6$

$$n^3 < n!$$
.

Proof. We shall show that for each $n \in \mathbb{N}^{\geq 6}$

$$n^3 < n! \tag{1}$$

by $\langle \text{extended/generalized} \rangle$ induction on n.

For the base step, let n = 6. Then

$$n^3 = 6^3 = 216. (2)$$

while

$$n! = 6! = 720. (3)$$

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number $n \in \mathbb{N}^{\geq 6}$. Assume that

$$n^3 < n!. (IH)$$

We need to show that

$$(n+1)^3 < (n+1)!.$$
 (IC)

We now compute:

$$(n+1)! = (n+1) [n!]$$

and by the inductive hypotheses (IH)

$$> (n+1) [n^3]$$

 $\langle \operatorname{Look\ at\ (IC)}, \operatorname{which\ holds\ if\ } n^3 \overset{\text{go\ for\ }}{\geq} (n+1)^2. \ \operatorname{Since\ } 6 \leq n, \operatorname{we} \ \underbrace{\operatorname{know}}_{} (n+1)^2 \leq (n+n)^2 = (2n)^2 = 4n^2 \leq 6n^2 \leq n \cdot n^2 = n^3. \rangle$

$$= (n+1) \ n \cdot n^2$$

and since $n \ge 6 \ge 4$

$$\geq (n+1) 4 \cdot n^{2}$$

$$= (n+1) (2n)^{2}$$

$$= (n+1) (n+n)^{2}$$

and since $n \in \mathbb{N}$ so $n \ge 1$

$$\geq (n+1) (n+1)^2$$

= $(n+1)^3$.

Thus inequality (IC) hold. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number $n \in \mathbb{N}^{\geq 6}$.

(also called complete induction, our book calls this 2nd PMI) Strong Induction

Fix $n_0 \in \mathbb{Z}$.

 $P(n_0)$ is true BASE STEP:

for each $n \in \mathbb{Z}^{\geq n_0}$: $\underbrace{[P(j) \text{ is true for } j \in \{n_0, 1 + n_0, \dots, n\}]}_{\text{inductive hypothesis}} \Rightarrow \underbrace{[P(n+1) \text{ is true}]}_{\text{inductive conclusion}}$ INDUCTIVE STEP:

 $\S 4.2$ p194

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex3. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

Prove that a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}.$

 $RD = Recursive Def. \uparrow$

Symbolically:

$$(\forall n \in \mathbb{Z}^{\geq 0}) \left[(a_0 = 2 \land a_1 = 4 \land a_2 = 6 \land (n \in \mathbb{N}^{\geq 3} \implies a_n = 5a_{n-3})) \implies a_n \text{ is even } \right]$$

Thinking Land

Let's make a chart to help us understand better what is going on.

n	a_n	
0	$a_0 = 2$ (given)	
1	$a_1 = 4$ (given)	
2	$a_2 = 6$ (given)	
	now the recursive definition kicks in that $a_n = 5a_{n-3}$	
3	$a_3 = 5a_{3-3} = 5a_0 = 5(2) = 10$	
4	$a_4 = 5a_{4-3} = 5a_1 = 5(4) = 20$	
5	$a_5 = 5a_{5-3} = 5a_2 = 5(6) = 30$	
6	$a_6 = 5a_{6-3} = 5a_3 = 5(10) = 50$	
7	$a_7 = 5a_{7-3} = 5a_4 = 5(20) = 100$	
8	$a_8 = 5a_{8-3} = 5a_5 = 5(30) = 150$	
Do we see a pattern?		

For the Base Step, which n's do we need to check? ο.

n = 0, 1, 2

Since in the Base Step we verified the Thm. holds up to (and including) n = 2,

where should we start the Induction Step? At n = 2.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq 2$. Assume the inductive hypothesis, which is

if
$$j \in \{0, 1, 2, \dots, n\}$$
 then a_j even. (IH)

We will show the inductive conclusion, which is

$$a_{n+1}$$
 is even. (IC)

Strong Induction.

Fix $n_0 \in \mathbb{Z}$.

Prof. Girardi

 $\S 4.2$ p194

BASE STEP:

 $P(n_0)$ is true

INDUCTIVE STEP:

for each
$$n \in \mathbb{Z}^{\geq n_0}$$
: $\underbrace{[P(j) \text{ is true for } j \in \{n_0, 1 + n_0, \dots, n\}]}_{\text{inductive hypothesis}} \Rightarrow \underbrace{[P(n+1) \text{ is true}]}_{\text{inductive conclusion}}$

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex3. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n > 3$. (RD)

Prove that a_n is even for each $n \in \mathbb{Z}^{\geq 0} \stackrel{\text{i.e.}}{=} \{0, 1, 2, 3, 4, \ldots\}$. Symbolically: $(\forall n \in \mathbb{Z}^{\geq 0}) \left[(a_0 = 2 \land a_1 = 4 \land a_2 = 6 \land (n \in \mathbb{N}^{\geq 3} \implies a_n = 5a_{n-3})) \implies a_n \text{ is even } \right]$

Proof. Let $\{a_n\}_{n=0}^{\infty}$ be the recursively defined sequence of integers

$$a_0 = 2$$
 , $a_1 = 4$, $a_2 = 6$

and

$$a_n = 5a_{n-3}$$
 when $n \in \mathbb{N}$ and $n \ge 3$. (RD)

We will show that a_n is even for each $n \in \mathbb{Z}^{\geq 0}$ by strong induction on n.

For the base step, first let n = 0. Then $a_n = a_0 = 2$, which is even. Next let n = 1 Then $a_n = a_1 = 4$, which is even. Finally let n = 2. Then $a_n = a_2 = 6$, which is even. Thus a_0, a_1 , and a_2 are each even. This completes the base step.

For the inductive step, fix $n \in \mathbb{N}^{\geq 2}$ and assume the inductive hypothesis, which is

if
$$j \in \{0, 1, 2, \dots, n\}$$
 then a_j even. (IH)

We will show the inductive conclusion, which is

$$a_{n+1}$$
 is even. (IC)

Since $n \geq 2$,

$$n+1 \ge 3$$

and so, by the recursive definition (RD) (the recurive definition has kicked in for a_{n+1} since $n+1 \ge 3$)

$$a_{n+1} = 5a_{(n+1)-3}$$

and so

$$a_{n+1} = 5a_{n-2}. (1)$$

Since $n \in \mathbb{Z}^{\geq 2}$, we know $2 \leq n$ and so

$$0 < n - 2 < n$$

which gives $n-2 \in \{0,1,2,\ldots,n\}$. Thus we can apply the inductive hypothesis (IH) to j=n-2to get

$$a_{n-2}$$
 is even. (2)

Thus a_{n+1} is even by equations (1) and (2) and Lemma PEA. This completes the inductive step. Thus the base step and inductive step hold. So a_n is even for each $n \in \mathbb{Z}^{\geq 0}$.

 $\S 4.2$

p194

Strong Induction (also called complete induction, our book calls this 2nd PMI)

Fix $n_0 \in \mathbb{Z}$.

If

BASE STEP: $P(n_0)$ is true

INDUCTIVE STEP: for each $n \in \mathbb{Z}^{\geq n_0}$: P(j) is true for $j \in \{n_0, 1 + n_0, \dots, n\}$ \Rightarrow P(n+1) is true inductive hypothesis

then P(n) is true for each $n \in \mathbb{Z}^{\geq n_0}$.

Ex4. Theorem. Each natural number n has a factorization as

$$n=2^k n$$

for some k is some nonnegative integer and some odd natural number m.

▶. Written symbolically:

$$(\forall n \in \mathbb{N}) \ (\exists k \in \mathbb{Z}^{\geq 0}) \ (\exists m \in \mathbb{N}) \ [n = 2^k m \land m \text{ is odd }].$$

Thinking Land

Let's make a chart to help us understand better what is going on.

	1 0 0
n	$n = 2^k m$ where $k \in \{0, 1, 2, 3, 4, 5, \ldots\}$ and $m \in \{1, 3, 5, 7, 9, 11, \ldots\}$
1	$1 = 2^0 \cdot 1$
2	$2 = 2^1 \cdot 1$
3	$3 = 2^0 \cdot 3$
4	$4 = 2^2 \cdot 1$
5	$5 = 2^0 \cdot 5$
6	$6 = 2^1 \cdot 3$
7	$7 = 2^0 \cdot 7$
So i	if n is <u>odd</u> , then $n = \underline{2^0 \cdot n}$ so $k := \underline{0} \in \mathbb{Z}^{\geq 0}$ and $m := \underline{n}$ with m an odd natural number.
8	$8 = 2^{1} \cdot 4 = 2^{1} \cdot (2^{k_4} \cdot m_4) = 2^{1+k_4} \cdot m_4$
10	$10 = 2^{1} \cdot 5 = 2^{1} \cdot \left(2^{k_{5}} \cdot m_{5}\right) = 2^{1+k_{5}} \cdot m_{5}$
12	$12 = 2^{1} \cdot 6 = 2^{1} \cdot \left(2^{k_{6}} \cdot m_{6}\right) = 2^{1+k_{6}} \cdot m_{6}$

- \circ . For the Base Step, which n's do we need to check?
- \circ . Since in the Base Step we verified the Thm. holds up to (and including) n = 1,

where should we start the <u>Induction Step?</u> At n = 1.

So the first line in your induction step should look something line:

For the inductive step, fix $n \in \mathbb{N}$ such that $n \geq \underline{1}$. Assume the inductive hypothesis, which is

if
$$j \in \{1, 2, ..., n\}$$
 then $j = 2^{k_j} m_j$ for some $k_j \in \mathbb{Z}^{\geq 0}$ and odd natural number m_j . (IH)

We will show the inductive conclusion, which is

$$n+1=2^k m$$
 for some $k \in \mathbb{Z}^{\geq 0}$ and odd natural number m . (IC)

To show the (IC), we will need to consider (the only possible) two cases for n: n is even and n is odd.

n = 1

Ex4. Written symbolically: $(\forall n \in \mathbb{N}) \ (\exists k \in \mathbb{Z}^{\geq 0}) \ (\exists m \in \mathbb{N}) \ [n = 2^k m \land m \text{ is odd }].$

Proof. We shall show that if $n \in \mathbb{N}$ then n can be written as

$$n = 2^k m$$
 for some $k \in \mathbb{Z}^{\geq 0}$ and odd natural number m . (1)

by strong induction on n.

For the base step, let n = 1. Then

$$n = 1 = 2^0 \cdot 1 = 2^k m$$

where $k = 0 \in \mathbb{Z}^{\geq 0}$ and $m = 1 \in \mathbb{N}$ is odd. So (1) holds when n = 1. This completes the base step. For the inductive step, fix $n \in \mathbb{N}$. Assume the inductive hypothesis, which is

if
$$j \in \{1, 2, \dots, n\}$$
 then (IH)

 $j = 2^{k_j} m_j$ for some $k_j \in \mathbb{Z}^{\geq 0}$ and odd natural number m_j .

We will show the inductive conclusion, which is

$$n+1=2^k m$$
 for some $k \in \mathbb{Z}^{\geq 0}$ and odd natural number m , (IC)

by considering (the only possible) two cases: n is even and n is odd.

For the first case, let n be an even natural number. Then n+1 is an odd natural numbers so

$$n+1 = 2^0 (n+1) = 2^k m$$

where $k=0\in\mathbb{Z}^{\geq 0}$ and m=n+1 is an odd natural number. Thus (IC) holds for the first case.

For the second case, let n be an odd natural number. Then n+1 is an even natural number; thus, there is $l \in \mathbb{N}$ such that

$$n+1=2l. (2)$$

Note that $l \in \{1, 2, ..., n\}$ since $l \in \mathbb{N}$ and

$$1 \le l = \frac{n+1}{2} \le \frac{n+n}{2} = n.$$

Thus by the inductive hypotheses (IH) $\langle \text{think } j := l \rangle$ there exists $k_l \in \mathbb{Z}^{\geq 0}$ and an odd natural number m_l such that

$$l = 2^{k_l} m_l. (3)$$

Equations (2) and (3) give,

$$n+1=2l=2\left(2^{k_l}m_l\right)=\left(2^{1+k_l}\right)\,(m_l)=2^km_l$$

where $m:=m_l$ is an odd natural number and $k:=1+k_l \in \mathbb{Z}^{\geq 0}$ (since $k_l \in \mathbb{Z}^{\geq 0}$). Thus (IC) holds for the second case. This completes the inductive step.

Thus the base step and inductive step hold. So (1) holds for all $n \in \mathbb{N}$ by strong induction. \square