Ex1.

WTS.

Prof. Girardi solution Induction Examples

— 1 1
P that = <2—-—fi h int .
rove tha ; 5 < ~ for each integer n
(Vn € N) [P(n) is true] where P(n) is the open sentence " | % < 2 — < in the variable n € N.

Proof. Using basic induction on the variable n, we will show that for each n € N

~ 1 L
—_<9_= 1
For the base step, let n = 1. Since, when n =1,
n 1
1 1 1
L S S
i=1 i=1
inequality (1) holds when n = 1. This finishes the base step.
For the inductive step, fix n € N. We assume the inductive hypothesis, which is (P (n) is true)

n

Zé§2—l (IH)

n
i=1
For the inductive step, your goal is to show the inductive conclusion, which is (P (n +1) is true)
1 1
< 2-—

2 — n+1
=1

n+1

(1C)

n+1

We now have (  recall Y " a; = (a1 + a2+ + an) + ant1 = (Z ) +ans1 )

n+1 1 1
== Z|+—
Z i (; Zz) (n+ 1)
and by the inductive hypothesis (IH)

< (2 1) + !
- n)  (n+1)°
(whenever do not know what to do next, LOOK at (IC) for hint on where to go next)

s e

(inequality help: n?+n+1 n?+n so "f;j;;l Z;IZ so — (n%rl) "f;{i_’i:l — <n+_1) Z;ig)
1 2
< 9_ n°+n
n+1/) |[n?>+n
1
= 2-— i
n+1

Thus (IC) hold. This completes the inductive step.
Thus, by induction, (1) holds for each n € N. O
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Ex2.

Prof. Girardi solution Induction Examples

When we write an induction proof, we usally write the Base Step first.

However, in your Thinking Land, we usually do the Inductive Step first. Why?

Let’s say we want to show a (Vn € Z=%) [ P (n)] and our inductive step (i.e., P (n) = P (n+1))
only works when n > 7 (and our inductive step just does not work when n is 5 or 6). All is not
lost! In this situation, we need to show the base step P (n) hold true when n is: 5, 6, and 7

Prove that for n € N with n > 6

n® <nl.
Proof. We shall show that for each n € N=¢
n® < n! (1)
by (extended/generalized) induction on n.
For the base step, let n = 6. Then
n? = 6* = 216. (2)
while
n! = 6! = 720. (3)

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number n € NZ6. Assume that
n < nl. (IH)
We need to show that
(n+1)° < (n+1).. (IC)
We now compute:
(n+1)! = (n+1)[n!]
and by the inductive hypotheses (IH)
> (n+1) [n®]
(Look at (IC), which holds i n® ™ (n + 1)%. Since 6 < n, we know (n+1)2 < (n+n)® = (2n)? = 4n? < 6n% < n-n? = n.)
=n+1)n-n?

and sincen > 6 > 4

and sincen € Nson > 1
(n+1) (n+1)2
=(n+1)>.

v

Thus inequality (IC) hold. This completes the inductive step.
Thus, by induction, inequality (1) holds for each natural number n € N=5. 0.
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Prof. Girardi solution Induction Examples

Strong Induction (also called complete induction, our book calls this 224 PMI) §4.2
Fix ng € Z. p194
It
BASE STEP: P(ny) is true
INDUCTIVE STEP:  for each n € Z="0: [ P(j) is true for j € {ng, 1+ ng,...,n} | = [ P(n+ 1) is true |
inductiveﬂlfypothesis inductiw;(;)nclusion

then P(n) is true for each n € Z=m0.

Ex3. Let {a,}. -, be the recursively defined sequence of integers

a0:2 s CL1:4 s a2:6
and

a, = ba,_3 when n € N and n > 3. (RD)
Prove that a,, is even for each n € Z2° = {0,1,2,3,4,...}. RD = Recursive Def. 1

». Symbolically:

(‘v’nEZZO) [(a0:2/\a1:4/\a2:6/\(n€N23 == an:5an_3)) = a, iseven]

‘ Thinking Land ‘

Let’s make a chart to help us understand better what is going on.

o] a

0| ag=2 (given)

1]la; =4 (given)

21 ay =6 (given)

now the recursive definition kicks in that a, = Ha,_3
az = baz_3 = bag = 5(2) = 10
as = bay—3 = ba; = 5(4) =20
as = bas_3 = bay = 5(6) = 30
(
(

g — 5&6_3 = 5&3 =35 10) 50
a7 = bar_3 = bay = 5(20) = 100
ag = 5@8_3 = 5@5 = 5(30) =150

OIS O &~ W

Do we see a pattern? ‘

o.  For the Base Step, which n’s do we need to check? n=20,1,2

o.  Since in the Base Step we verified the Thm. holds up to (and including) n = _2 |
where should we start the Induction Step? Atn=_2 .

So the first line in your induction step should look something line:

For the inductive step, fix n € N such that n > _2 . Assume the inductive hypothesis, which is
if 7 €{0,1,2,...,n} then a; even. (IH)
We will show the inductive conclusion, which is

apyq 1S even. (IC)
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Ex3.

Prof. Girardi solution Induction Examples

J/

Strong Induction. §4.2
Fix ny € Z. p194
It
BASE STEP: P(ngp) is true
INDUCTIVE STEP:  for each n € Z="0: [ P(j) is true for j € {ng, 1+ no,...,n} | = [ P(n+ 1) is true |
inductive‘gypothesis inductivt;rconclusion

then P(n) is true for each n € Z="0.

Let {a,},_, be the recursively defined sequence of integers
a0:2 y CL1:4 y a2:6
and

a, = ba,—3 when n e Nandn > 3. (RD)

Prove that a,, is even for each n € Z2° = {0,1,2,3,4,...}.

Symbolically:(Vn € Z=°) [ (ag=2Aa1 =4ANay=6A (n € N2* = q, =5a,_3)) = a, is even |

Proof. Let {a,} -, be the recursively defined sequence of integers
a=2 , e =4 , a; =6
and
ay = ba,_3 when n € N and n > 3. (RD)

We will show that a,, is even for each n € Z=° by strong induction on n.

For the base step, first let n = 0. Then a, = ay = 2, which is even. Next let n = 1 Then
a, = a; = 4, which is even. Finally let n = 2. Then a,, = as = 6, which is even. Thus ag, a4,
and as are each even. This completes the base step.

For the inductive step, fix n € N2 and assume the inductive hypothesis, which is

if 7 € {0,1,2,...,n} then a; even. (IH)
We will show the inductive conclusion, which is
(py1 1S even. (IC)
Since n > 2,
n+1>3

and so, by the recursive definition (RD) (the recurive definition has kicked in for an4+1 since n +1 > 3)

Apt1 = DA(n41)-3
and so
Apt1 = DAp_2. (1)
Since n € Z=2, we know 2 < n and so
0<n—-2<n,
which gives n —2 € {0,1,2,...,n}. Thus we can apply the inductive hypothesis (IH) to j =n —2
to get
ap—o is even. (2)
Thus a,+1 is even by equations (1) and (2) and Lemma PEA. This completes the inductive step.
Thus the base step and inductive step hold. So a,, is even for each n € Z=°. O
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Strong Induction (also called complete induction, our book calls this 224 PMI)

Fix ng € Z.
If
BASE STEP: P(ng) is true
INDUCTIVE STEP:  for each n € ZZ"0: [ P(j) is true for j € {ng,1 +ng,...,n} ] = [ P(n+1) is true |

inductive hypothesis inductive conclusion
then P(n) is true for each n € Z="0.

Theorem. Each natural number n has a factorization as

n = 2"m
for some k is some nonnegative integer and some odd natural number m.
Written symbolically:

(Vn € N) (Fk € Z=°) (3m e N) [n=2*m A mis odd |.

‘ Thinking Land ‘

Let’s make a chart to help us understand better what is going on.

n n = 28m where k € {0,1,2,3,4,5,...} and m € {1,3,5,7,9,11,...}
1 1=2°.1

2 2=2.1

3 3=20.3

4 4= 22 .1

5 5= 20.5

6 6= 2.3

7 7=20.7

Soif nis odd ,thenn = 2°-n so k:=0 € Z=2° and m := n with m an odd natural number.
8 8= 2.4 =21 . (2M .my ) =2 .y

10 10= 2" -5 =21 - (2k .y ) =21"h g

12 12= 2" . 6 =2 - (2k .mg ) =21k .,
For the Base Step, which n’s do we need to check? n=1

Since in the Bage Step we verified the Thm. holds up to (and including) n = _1

Y

where should we start the Induction Step? Atn=_1 .

So the first line in your induction step should look something line:

For the inductive step, fix n € N such that n > _1 . Assume the inductive hypothesis, which is
if j €{1,2,...,n} then j=2%m; for some k; € Z=° and odd natural number m;.  (IH)
We will show the inductive conclusion, which is
n+1=2"m  for some k € Z=° and odd natural number m. (IC)

To show the (IC), we will need to consider (the only possible) two cases for n: n is even and n is odd .
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Ex4.

Prof. Girardi solution Induction Examples
Written symbolically: (Vn € N) (3k € Z2°) (3m € N) [n=2"m A misodd .

Proof. We shall show that if n € N then n can be written as
n=2"n  for some k € Z=° and odd natural number m. (1)

by strong induction on n.

For the base step, let n = 1. Then
n=1=2"-1=2"m
where k = 0 € Z=° and m = 1 € Nis odd. So (1) holds when n = 1. This completes the base step.
For the inductive step, fix n € N. Assume the inductive hypothesis, which is
if 7 € {1,2,...,n} then (IH)
j =2%m; for some k; € Z=° and odd natural number m;.
We will show the inductive conclusion, which is
n+1=2"m  for some k € Z=° and odd natural number m, (IC)

by considering (the only possible) two cases: n is even and n is odd.
For the first case, let n be an even natural number. Then n + 1 is an odd natural numbers so
n+1=2"(n+1)=2"m

where k = 0 € Z=° and m = n + 1 is an odd natural number. Thus (IC) holds for the first case.
For the second case, let n be an odd natural number. Then n + 1 is an even natural number;

thus, there is [ € N such that

n—+1=2L (2)
Note that [ € {1,2,...,n} since [ € N and
1§l:n+1 Sn—i—n:n'
2 2

Thus by the inductive hypotheses (IH) (think j := i) there exists k; € Z=° and an odd natural
number m; such that
= leml. (3)
Equations (2) and (3) give,
n+1=20=22%m) = (2"") (m)) = 2*m
where m:=m; is an odd natural number and k:=1+ k; € Z=° (since k; € Z=°). Thus (IC) holds

for the second case. This completes the inductive step.

Thus the base step and inductive step hold. So (1) holds for all n € N by strong induction. [
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