
Prof. Girardi Induction Examples

Ex1. Prove that
n∑

i=1

1

i2
≤ 2− 1

n
for each integer n.

WTS. (∀n ∈ N) [P (n) is true] where P (n) is the open sentence
∑n

i=1
1
i2
≤ 2− 1

n
in the variable n ∈ N.

Proof. Using basic induction on the variable n, we will show that for each n ∈ N
n∑

i=1

1

i2
≤ 2− 1

n
. (1)

For the
::::
base

:::::
step, let n = 1. Since, when n = 1,

n∑
i=1

1

i2
=

1∑
i=1

1

i2
=

1

12
= 1 and 2− 1

n
= 2− 1

1
= 2− 1 = 1,

inequality (1) holds when n = 1. This finishes the base step.
For the

:::::::::
inductive

:::::
step, fix n ∈ N. We assume the inductive hypothesis, which is ⟨P (n) is true ⟩

n∑
i=1

1

i2
≤ 2− 1

n
. (IH)

For the inductive step, your goal is to show the inductive conclusion, which is ⟨P (n+ 1) is true ⟩
n+1∑
i=1

1

i2
≤ 2− 1

n+ 1
. (IC)

We now have ⟨ recall

n+1∑
i=1

ai = (a1 + a2 + · · ·+ an) + an+1 =

(
n∑

i=1

ai

)
+ an+1 ⟩

n+1∑
i=1

1

i2
=

(
n∑

i=1

1

i2

)
+

1

(n+ 1)2

and by the inductive hypothesis (IH)

≤
(
2− 1

n

)
+

1

(n+ 1)2

⟨
:::::::
whenever

:::
do

:::
not

:::::
know

:::::
what

::
to

:::
do

::::
next,

::::::
LOOK

:::
at

::::
(IC)

:::
for

:::
hint

:::
on

:::::
where

:::
to

::
go

::::
next ⟩

=

=

=

=

(inequality help: n2 + n+ 1 n2 + n so n2+n+1
n2+n

n2+n
n2+n

so −
(

1
n+1

)
n2+n+1
n2+n

−
(

1
n+1

)
n2+n
n2+n

)

≤

= 2−
(

1

n+ 1

)
.

Thus (IC) hold. This completes the inductive step.
Thus, by induction, (1) holds for each n ∈ N. □
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Rmk. When we write an induction proof, we usally write the
:::::
Base

:::::
Step first.

However, in your Thinking Land, we usually do the
::::::::::
Inductive

:::::
Step first. Why?

Let’s say we want to show a
(
∀n ∈ Z≥5

)
[P (n) ] and our

::::::::::
inductive

:::::
step (i.e., P (n) =⇒ P (n+ 1))

only works when n ≥ 7 (and our inductive step just does not work when n is 5 or 6). All is not

lost! In this situation, we need to show the
::::
base

:::::
step P (n) hold true when n is: .

Ex2. Prove that for n ∈ N with n ≥ 6

n3 < n! .

Proof. We shall show that for each n ∈ N≥6

n3 < n! (1)

by ⟨extended/generalized ⟩ induction on n.

For the base step, let n = 6. Then

n3 = 63 = 216. (2)

while

n! = 6! = 720. (3)

Since 216 < 720, the inequality in (1) holds when n = 6. This completes the base step.

For the inductive step, fix a natural number n ∈ N≥6. Assume that

n3 < n!. (IH)

We need to show that

(n+ 1)3 < (n+ 1)!. (IC)

We now compute:

(n+ 1)! = (n+ 1) [ n! ]

and by the inductive hypotheses (IH)

> (n+ 1)
[
n3
]

⟨Look at (IC), which holds if n3
go for

≥ (n+ 1)2. Since 6 ≤ n, we
::::
know (n+1)2 ≤ (n+n)2 = (2n)2 = 4n2 ≤ 6n2 ≤ n·n2 = n3. ⟩

= (n+ 1) n · n2

and since n ≥ 6 ≥ 4

≥

=

=

and since n ∈ N so n ≥ 1

≥ (n+ 1) (n+ 1)2

= (n+ 1)3 .

Thus inequality (IC) hold. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number n ∈ N≥6. □,,.
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Strong Induction (also called complete induction, our book calls this 2nd PMI) §4.2
p194Fix n0 ∈ Z.

If
base step: P (n0) is true
inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸

inductive hypothesis

⇒ [ P (n+ 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

Ex3. Let {an}∞n=0 be the
:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

Prove that an is even for each n ∈ Z≥0 ı.e.
= {0, 1, 2, 3, 4, . . .}. RD = Recursive Def. ↑

▶. Symbolically:

Thinking Land

Let’s make a chart to help us understand better what is going on.

n an

0 a0 = 2 (given)

1 a1 = 4 (given)

2 a2 = 6 (given)

now the recursive definition kicks in that an = 5an−3

3 a3 =

4 a4 =

5 a5 =

6 a6 =

7 a7 =

8 a8 =

Do we see a pattern?

◦. For the
:::::
Base

:::::
Step, which n’s do we need to check? .

◦. Since in the
:::::
Base

:::::
Step we verified the Thm. holds up to (and including) n = ,

where should we start the
::::::::::
Induction

::::::
Step? At n = .

So the first line in your induction step should look something line:

For the inductive step, fix n ∈ N such that n ≥ . Assume the inductive hypothesis, which is

(IH)

We will show the inductive conclusion, which is

(IC)
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Strong Induction. §4.2
p194Fix n0 ∈ Z.

If

base step: P (n0) is true
inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸

inductive hypothesis

⇒ [ P (n+ 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

Ex3. Let {an}∞n=0 be the
:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

Prove that an is even for each n ∈ Z≥0 ı.e.
= {0, 1, 2, 3, 4, . . .}.

▶. Symbolically:
(
∀n ∈ Z≥0

) [ (
a0 = 2 ∧ a1 = 4 ∧ a2 = 6 ∧

(
n ∈ N≥3 =⇒ an = 5an−3

))
=⇒ an is even

]
Proof. Let {an}∞n=0 be the

:::::::::::
recursively

::::::::
defined

::::::::::
sequence of integers

a0 = 2 , a1 = 4 , a2 = 6

and

an = 5an−3 when n ∈ N and n ≥ 3. (RD)

We will show that an is even for each n ∈ Z≥0 by strong induction on n.

For the base step, first let n = 0. Then an = a0 = 2, which is even. Next let n = 1 Then

an = a1 = 4, which is even. Finally let n = 2. Then an = a2 = 6, which is even. Thus a0, a1,

and a2 are each even. This completes the base step.

For the inductive step, fix n ∈ N≥2 and assume the inductive hypothesis, which is

if j ∈ {0, 1, 2, . . . , n} then aj even. (IH)

We will show the inductive conclusion, which is

an+1 is even. (IC)

Since n ≥ 2,

n+ 1 ≥ 3

and so, by the recursive definition (RD) ⟨ the recurive definition has kicked in for an+1 since n+ 1 ≥ 3 ⟩

an+1 = 5a(n+1)−3

and so

an+1 = 5an−2. (1)

Since n ∈ Z≥2, we know 2 ≤ n and so

0 ≤ n− 2 ≤ n,

which gives n− 2 ∈ {0, 1, 2, . . . , n}. Thus we can apply the inductive hypothesis (IH) to j = n− 2

to get

an−2 is even. (2)

Thus an+1 is even by equations (1) and (2) and Lemma PEA. This completes the inductive step.

Thus the base step and inductive step hold. So an is even for each n ∈ Z≥0. □
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Strong Induction (also called complete induction, our book calls this 2nd PMI) §4.2
p194Fix n0 ∈ Z.

If

base step: P (n0) is true
inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸

inductive hypothesis

⇒ [ P (n+ 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

Ex4. Theorem. Each natural number n has a factorization as

n = 2km

for
:::::
some k is some nonnegative integer and

:::::
some odd natural number m.

▶. Written symbolically:

Thinking Land

Let’s make a chart to help us understand better what is going on.

n n = 2km where k ∈ {0, 1, 2, 3, 4, 5, . . .} and m ∈ {1, 3, 5, 7, 9, 11, . . .}

1 1 =

2 2 =

3 3 =

4 4 =

5 5 =

6 6 =

7 7 =

So if n is , then n = so k := ∈ Z≥0 and m := with m an odd natural number.

8 8 =

10 10 =

12 12 =

◦. For the
:::::
Base

:::::
Step, which n’s do we need to check? .

◦. Since in the
:::::
Base

:::::
Step we verified the Thm. holds up to (and including) n = ,

where should we start the
::::::::::
Induction

::::::
Step? At n = .

So the first line in your induction step should look something line:

For the inductive step, fix n ∈ N such that n ≥ . Assume the inductive hypothesis, which is

(IH)

We will show the inductive conclusion, which is

(IC)

To show the (IC), we will need to consider ⟨ the only possible ⟩ two cases for n: and .
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Ex4. Written symbolically: (∀n ∈ N)
(
∃k ∈ Z≥0

)
(∃m ∈ N)

[
n = 2km ∧ m is odd

]
.

Proof. We shall show that if n ∈ N then n can be written as

n = 2km for some k ∈ Z≥0 and odd natural number m. (1)

by strong induction on n.

For the base step, let n = 1. Then

n = 1 = 20 · 1 = 2km

where k = 0 ∈ Z≥0 and m = 1 ∈ N is odd. So (1) holds when n = 1. This completes the base step.

For the inductive step, fix n ∈ N. Assume the inductive hypothesis, which is

if j ∈ {1, 2, . . . , n} then (IH)

j = 2kjmj for some kj ∈ Z≥0 and odd natural number mj.

We will show the inductive conclusion, which is

n+ 1 = 2km for some k ∈ Z≥0 and odd natural number m, (IC)

by considering ⟨ the only possible ⟩ two cases: n is even and n is odd.

For the first case, let n be an even natural number. Then n+ 1 is an odd natural numbers so

n+ 1 = 20 (n+ 1) = 2km

where k = 0 ∈ Z≥0 and m = n+ 1 is an odd natural number. Thus (IC) holds for the first case.

For the second case, let n be an odd natural number. Then n + 1 is an even natural number;

thus, there is l ∈ N such that

n+ 1 = 2l. (2)

Note that l ∈ {1, 2, . . . , n} since l ∈ N and

1 ≤ l =
n+ 1

2
≤ n+ n

2
= n.

Thus by the inductive hypotheses (IH) ⟨ think j := l ⟩ there exists kl ∈ Z≥0 and an odd natural

number ml such that

l = 2klml. (3)

Equations (2) and (3) give,

n+ 1 = 2l = 2
(
2klml

)
=
(
21+kl

)
(ml) = 2km

where m:=ml is an odd natural number and k:=1 + kl ∈ Z≥0 (since kl ∈ Z≥0). Thus (IC) holds

for the second case. This completes the inductive step.

Thus the base step and inductive step hold. So (1) holds for all n ∈ N by strong induction. □
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