Remark. Think about taking an \(n \in \mathbb{N} \) and dividing it by \(d \in \mathbb{N} \). What happens?

Let’s look at an example: take \(n = 11 \) and divide it by \(d = 5 \) to get

\[
\frac{11}{5} = 2 \frac{1}{5} \quad \text{or equivalently} \quad 11 = 5 \times 2 + 1 .
\]

In general, one can divide \(n \in \mathbb{N} \) by \(d \in \mathbb{N} \). Think of as:

\[
d \sqrt[n]{n} \quad \vdots \quad r
\]

to get

\[
\frac{n}{d} = q \frac{r}{d} \quad \text{or equivalently} \quad n = dq + r
\]

for some quotient \(q \in \mathbb{N} \cup \{0\} \) and some remainder \(r \in \mathbb{N} \cup \{0\} \) where \(0 \leq r < d \).

Theorem. Division Algorithm for \(\mathbb{N} \)

\[
(\forall n \in \mathbb{N}) \ (\forall d \in \mathbb{N}) \ (\exists ! q \in \mathbb{N} \cup \{0\}) \ (\exists ! r \in \mathbb{N} \cup \{0\}) \ [(n = dq + r) \land (0 \leq r < d)]
\]

equivalently

\[
(\forall n \in \mathbb{N}) \ (\forall d \in \mathbb{N}) \ (\exists ! q \in \mathbb{N} \cup \{0\}) \ (\exists ! r \in \{0,1,\ldots,d-1\}) \ [n = dq + r]
\]

Remark. Here: \(r \in \{0,1,2,\ldots,d-1\} \) so there are \(d \) possibilities for \(r \).

Theorem. Division Algorithm for \(\mathbb{Z} \). (7th edition, page 62)

\[
(\forall n \in \mathbb{Z}) \ (\forall d \in \mathbb{Z} \setminus \{0\}) \ (\exists ! q \in \mathbb{Z}) \ (\exists ! r \in \mathbb{Z}) \ [(n = dq + r) \land (0 \leq r < |d|)]
\]

equivalently

\[
(\forall n \in \mathbb{Z}) \ (\forall d \in \mathbb{Z} \setminus \{0\}) \ (\exists ! q \in \mathbb{Z}) \ (\exists ! r \in \{0,1,\ldots,|d|-1\}) \ [n = dq + r]
\]

Remark. Here: \(r \in \{0,1,2,\ldots,(|d|-1)\} \) so there are \(d \) possibilities for \(r \).