Prove the one theorem which is assigned to your Group. Be sure to follow the Writing Guidelines.

Theorem 1 . Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let
$a_1 \equiv a_2 \pmod{n}$
and
$b_1 \equiv b_2 \pmod{n}$.
Then
$a_1 + b_1 \equiv a_2 + b_2 \pmod{n}.$
Theorem 2. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let
$a_1 \equiv a_2 \pmod{n}$
and
$b_1 \equiv b_2 \pmod{n}.$
Then $a_1b_1 \equiv a_2 \cdot b_2 \pmod{n}$.
Theorem 3 . Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. If
$a \equiv b \pmod{n}$
and
$b \equiv c \pmod{n},$
then $a \equiv c \pmod{n}$.
Optional Thinking Land Space