§3.1 p97

Warning

Henceforth, when asked to *symbolically write* a statement, unless otherwise stated,

- symbolically write the statement as it is stated (rather than something equivalent)
- if a statement is a quantified open sentence, then use needed quantifier(s) before the open sentence (e.g.: $\forall, \exists, \exists!$)
- use logical connectives symbols (e.g.: $\sim, \wedge, \vee, \Longrightarrow$, \iff) instead of the English words
- within an open sentence, you can use English words that are not logical connectives (e.g.: x is even).
- Beware: "x and y are odd" should be expressed as "x is odd \land y is odd".
- within an open sentence, you can use math symbols that are not logical connectives (e.g.: $a|b, a \equiv b \pmod{n}$)

LaTex Help

Look here for how to LaTex: $a \equiv b \pmod{n}$ (i.e., a is congruent to b modulo n).

Exercise. A variant of Exercise 3.1.9b.

Theorem 1. For integers a and b, if $a \equiv 7 \pmod{8}$ and $b \equiv 3 \pmod{8}$, then $ab \equiv 5 \pmod{8}$.

a. Symbolically write Thm. 1. As the universe, use: \mathbb{N} , \mathbb{Q} , \mathbb{R} , \mathbb{Z} , and/or some cross product of these. See above Warning.

cut this out and put your solution here

b. Prove Theorem 1 using Modulo Arithmetic and the fact that congruence is transitive.

Proof. cut this out and put your proof here