Warning

Henceforth, when asked to symbolically write a statement, unless otherwise stated,

- symbolically write the statement as it is stated (rather than something equivalent)
- if a statement is a quantified open sentence, then use needed quantifier(s) before the open sentence (e.g.: $\forall, \exists, \exists!$)
- use logical connectives symbols (e.g.: $\sim, \wedge, \vee, \Longrightarrow$, \iff) instead of the English words
- within an open sentence, you can use English words that are not logical connectives (e.g.: x is even).
- Beware: "x and y are odd" should be expressed as "x is odd \wedge y is odd".
- within an open sentence, you can use math symbols that are not logical connectives (e.g.: $a|b, a \equiv b \pmod{n}$)

Algebra Review

If you can not easily expand $(2a + 3b)^5$ as

$$(2a+3b)^5 = (1)(2a)^5(3b)^0 + (5)(2a)^4(3b)^1 + (10)(2a)^3(3b)^2 + (10)(2a)^2(3b)^3 + (5)(2a)^1(3b)^4 + (1)(2a)^0(3b)^5 + (10)(2a)^2(3b)^3 + (10)(2a)^2(3b)^2 + (10)(2a)^2 + ($$

then review Pascal's Triangle and the Binomial Theorem. Here is a link: Algebra 2.

LaTex Help

Look here for how to LaTex: a|b (i.e., a divides b) as well as $a \not| b$ (i.e., a does not divides b). Don't forget needed parentheses, e.g., a|b-1 does not make sense and should be written as a|(b-1).

Exercise. A variant of Exercise 3.1.6c.

Theorem 1. For each integer n, if n is odd then 8 divides $(n^4 + 4n^2 + 11)$.

a. Sybolically write Theorem 1. As universes, use \mathbb{Z} .

cut this out and put your solution here

b. Prove Theorem 1.

Proof. cut this out and put your proof here

§3.1 p97