§3.1 p97

Warning

Henceforth, when asked to symbolically write a statement, do so using quanifiers.

Don't forget needed parentheses, e.g., a|b-1 does not make sense and should be written as a|(b-1).

LaTex Help

Def. A nonzero integer m <u>divides</u> an integer n, denoted m|n, provided that $(\exists q \in \mathbb{Z}) [qm = n]$. P82 **Remark**. The notation for a $m \in \mathbb{Z}^{\neq 0}$ not dividing $n \in \mathbb{Z}$ is $m \nmid n$.

Exercise. A variant of Exercise 3.1.6b.

Theorem 1. For each integer a, if there exists an integer n such that a divides 9n+5 and a divides 6n+1, then a divides 7.

a. Symbolically write Theorem 1. Do not use English words but you can use the divides symbol (e.g., a|b).

Hint. Break down Theorem 1 in small steps. Thm 1 says

For each integer a, if there exists an integer n such that $a \mid (9n+5)$ and $a \mid (6n+1)$, then $a \mid 7$.

Now add some parenthees/brackets and take note of the if-then ...

(For each integer a) $\left[\left(\text{ there exists an } n \in \mathbb{N} \text{ such that } a | (9n+5) \text{ and } a | (6n+1) \right) \Rightarrow a | 7 \right]$. Now get rid of the English.

put solution here

b. Prove Theorem 1.