§3.1 p96

Warning

Henceforth, when asked to symbolically write a statement, do so using quanifiers.

Don't forget needed parentheses, e.g., a|b-1 does not make sense and should be written as a|(b-1).

LaTex Help

Def. A nonzero integer m <u>divides</u> an integer n, denoted m|n, provided that $(\exists q \in \mathbb{Z}) [qm = n]$. P82 **Remark**. The notation for a $m \in \mathbb{Z}^{\neq 0}$ not dividing $n \in \mathbb{Z}$ is $m \nmid n$.

Exercise. A variant of Exercise 3.1.3c.

Conjecture 1. For all integers a, b, and c such that $a \neq 0$, if a divides b - 1 and a divides c - 1, then a divides bc - 1.

a. Sybolically write Conjecture 1. As universes, use \mathbb{Z} and/or $\mathbb{Z}^{\neq 0}$ and/or some cross product of these.

Do not use English words but you can use the divides symbol (e.g., a|b).

put solution here

b. Determine if Conjecture 1 is true or false. If Conjecture 1 is true, then write a formal proof of Conjecture 1. If Conjecture 1 is false, then provide a counterexample that shows (and clearly explains) why Conjecture 1 if false.