Exercise. A variant of Exercise 2.4.14aef.

Let A be a subset of the real numbers. A number $b \in \mathbb{R}$ is called an <u>upper bound</u> for the set A provided that for each element $x \in A$, we have $x \leq b$.

Hint. Think of *complete the following* as finshing off ... in the statement that was started for you.

a. Write this definition in symbolic form by completing the following.

Let $A \subseteq \mathbb{R}$. A number b is called an <u>upper bound</u> for the set A provided that ... delete this line and put your answer here

e. Complete the following in symbolic form.

Let $A \subseteq \mathbb{R}$. A number b is not an upper bound for the set A provided that ... delete this line and put your answer here

f. Without using the symbols for quantifiers, complete the following sentence.

Let $A \subseteq \mathbb{R}$. A number b is not an upper bound for the set A provided that ... delete this line and put your answer here