► For a Strong Induction proof, in the <u>Base Step</u> check the <u>least</u> possible number of integer(s) as so to have a correct proof.

Exercises

Exercise 1. A <u>variant</u> of Exercise 4.3.11.

Define the sequence $\{a_n\}_{n=1}^{\infty}$ recurively by

$$a_1 = 1$$

 $a_2 = 5$
 $a_{n+1} = a_n + 2a_{n-1}$, if $n \in \mathbb{N}$. (1)

Prove that

$$a_n = 2^n + (-1)^n$$

for each $n \in \mathbb{N}$.

Exercise 2. Prove that every natural number greater than 3 may be written as an integer linear combination of the numbers 2 and 5; that is, if $m \in \mathbb{N}^{\geq 4}$ then there exists $x, y \in \mathbb{Z}$ such that m = 2x + 5y.

p209