Last Modified: Friday 6^{th} November, 2020 at 21:11

Math 300

- ▶ Recall, when asked to *symbolically write* a statement, do so **using quanifiers**.
- ▶ Unless otherwise stated, in a proof you may use any previous result (or Exercise) provided you reference the result.
- ▶ If you need, look at the LaTeX here to remind yourself how to Latex:

 $n|a \text{ (i.e., } n \text{ divides } a), n \nmid a \text{ (i.e., } n \text{ does not divide } a), \text{ and } a \equiv b \pmod{n} \text{ (i.e., } a \text{ is congruent to } b \text{ modulo } n).$

Exercises

Exercise 1. A variant of Exercise 3.2.1d.

Theorem 1. The integer n is odd if and only if n^3 is odd.

ER 1i. Sybolically write Theorem 1.

ER 1ii. Prove Theorem 1. You may use any result in §1.3 (Ch. 1 Summary p. 31-32) and/or the

definition of even/odd. You may not use Exercise 3.2.1 a,b, or c.

Exercise 2. A variant of Exercise 3.2.5.

Conjecture 2. For all integers a and b, if ab is even, then a is even or b is even.

ER 2i. Sybolically write Conjecture 2.

ER 2ii. Determine if Conjecture 2 is true or false. If Conjecture 2 is true, then write a formal proof of Conjecture 2. If Conjecture 2 is false, then provide a counterexample that shows (and clearly explains) why Conjecture 2 if false.

Exercise 3. A variant of Exercise 3.2.7.

Conjecture 3. For each integer *a*, we have that $a \equiv 2 \pmod{8}$ if and only if $(a^2 + 4a) \equiv 4 \pmod{8}$. **ER 3i.** Sybolically write Conjecture 3, using the biconditional (\iff). Next sybolically write Conjecture 3 as the conjection (\land) of two conditional (\implies) statements.

ER 3ii. For each of the two conditional statements in Part (3i), determine if the conditional statement is true or false. If the conditional statement is true, write a proof. If it is false, provide a counterexample.

ER 3ii. Is Conjecture 3 true or false? Explain.

Exercise 4. A variant of Exercise 3.2.16.

Let y_1, y_2, y_3, y_4 be real numbers. The **mean**, \overline{y} , of these four numbers is defined to be the sum of the four numbers divided by 4. That is,

$$\overline{y} = \frac{y_1 + y_2 + y_3 + y_4}{4}.$$

Prove that there exists a
$$y_i$$
 with $1 \le i \le 4$ such that $\overline{y} \le y_i$.
Hint: One way is to let y_{max} be the largest of y_1, y_2, y_3, y_4 .

p114

p112

p112