LaTex Help

Def. A nonzero integer m <u>divides</u> an integer n, denoted m|n, provided that $(\exists q \in \mathbb{Z}) [qm = n]$. P82 **Remark**. The notation for a $m \in \mathbb{Z}^{\neq 0}$ not dividing $n \in \mathbb{Z}$ is $m \nmid n$.

Warning

Henceforth, when asked to symbolically write a statement, do so using quanifiers.

Exercises

Exercise 1. A variant of Exercise 3.1.3c.

Conjecture 1. For all integers a, b, and c with $a \neq 0$, if a divides b - 1 and a divides c - 1, then a divides bc - 1.

ER 1i. Sybolically write Conjecture 1. As universes, use \mathbb{Z} and/or $\mathbb{Z}^{\neq 0}$ and/or some cross product of these. Hint: don't forget needed parentheses, e.g., a|b-1 does not make sense and should be written as a|(b-1).

ER 1ii. Determine if Conjecture 1 is true or false. If Conjecture 1 is true, then write a formal proof of Conjecture 1. If Conjecture 1 is false, then provide a counterexample that shows (and clearly explains) why Conjecture 1 if false.

Exercise 2. A variant of Exercise 3.1.3h.

Conjecture 2. For all integers a, b, and c with $a \neq 0$, if a divides bc then a divides b or a divides c. **ER 2i.** Sybolically write Conjecture 2. As universes, use \mathbb{Z} and/or $\mathbb{Z}^{\neq 0}$ and/or some cross product of these.

ER 2ii. Determine if Conjecture 2 is true or false. If Conjecture 2 is true, then write a formal proof of Conjecture 2. If Conjecture 2 is false, then provide a counterexample that shows (and clearly explains) why Conjecture 2 if false.

Exercise 3. A variant of Exercise 3.1.6b.

Theorem 3. For each integer a, if there exists an integer n such that a divides 9n+5 and a divides 6n+1, then a divides 7.

ER 3i. Sybolically written, Conjecture 3 is

$$(\forall a \in \mathbb{Z}) \left[\left(\exists n \in \mathbb{Z} \right) \left[a | (9n+5) \wedge a | (6n+1) \right] \implies a | 7 \right].$$
(3s)

In attempts to simplify (3s) (so we can see better what is going on), we let

- P(a) be the open sentence $(\exists n \in \mathbb{Z}) [a | (9n+5) \land a | (6n+1)]$
- Q(a) be the open sentence a|7
- R(a) be the open sentence $P(a) \implies Q(a)$.

p97

p96

p96

Then (3s) can be expressed as

 $(\forall a \in \mathbb{Z}) [P(a) \implies Q(a)]$ as well as simply just $(\forall a \in \mathbb{Z}) [R(a)].$

Explain why R(0) is true. (If you are confused about the notation, see Example 2.10 on page 57.) ER 3ii. Prove Theorem 3.