The coordinate system shown in Figure 1.1.1 is known as a **right-handed coordinate system**, because it is possible, using the right hand, to point the index finger in the positive direction of the *x*-axis, the middle finger in the positive direction of the *y*-axis, and the thumb in the positive direction of the *z*-axis, as in Figure 1.1.3.

Figure 1.1.3 Right-handed coordinate system

An equivalent way of defining a right-handed system is if you can point your thumb upwards in the positive z-axis direction while using the remaining four fingers to rotate the x-axis towards the y-axis. Doing the same thing with the left hand is what defines a **left-handed coordinate system**. Notice that switching the x- and y-axes in a right-handed system results in a left-handed system, and that rotating either type of system does not change its "handedness". Throughout the book we will use a right-handed system.

For functions of three variables, the graphs exist in 4-dimensional space (i.e. \mathbb{R}^4), which we can not see in our 3-dimensional space, let alone simulate in 2-dimensional space. So we can only think of 4-dimensional space abstractly. For an entertaining discussion of this subject, see the book by ABBOTT.¹

So far, we have discussed the *position* of an object in 2-dimensional or 3-dimensional space. But what about something such as the velocity of the object, or its acceleration? Or the gravitational force acting on the object? These phenomena all seem to involve motion and *direction* in some way. This is where the idea of a *vector* comes in.

¹One thing you will learn is why a 4-dimensional creature would be able to reach inside an egg and remove the yolk without cracking the shell!