These problems are samples of final-like problems.

These problems do not constitute a comprehensive review for the final.

- **1.** Let the curve *C* be the helix parameterized by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le 2\pi$ and let $f(x, y, z) = x^2 + y^2 + z^2$. Evaluate the line integral $\int_C f(x, y, z) ds$.
- 2. Evaluate the line integral $\int_C x^2 y \, dx + (x 2y) \, dy$ where *C* is the part of the parabola $y = x^2$ from (0,0) to (1,1).
- **3.** Evaluate the line integral $\int_C (2y + \sqrt{1 + x^5}) dx + (5x e^{y^2}) dy$ where *C* is the circle $x^2 + y^2 = 4$ oriented counterclockwise.
- 4. Find the equation of the plane that contains the points (0,1,2), (-1,2,3), and (-4,-1,2). Demonstrate (i.e., check) that your answer is correct.
- 5. Express $\vec{v} = 3\vec{i} + 5\vec{j} + \vec{k}$ as the sum of a vector parallel to $\vec{w} = \vec{i} + 2\vec{j} \vec{k}$ and a vector perpendicular to \vec{w} . Demonstrate (i.e., check) that your answer is correct.
- 6. Find the volume between $z = 2 x^2 y^2$ and $z = x^2 + y^2 2$. (Draw a meaningful picture.)
- 7. Compute $\int_0^1 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$.
- 8. Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at the point P = (1, 1, 0), in the direction of $\vec{v} = 2\vec{i} 3\vec{j} + 6\vec{k}$.
- 9. Find all points (x, y) where a local maximum, local minimum, or saddle point occurs for the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- 10. Find the area of the region bounded by $y + x^2 = 2$ and y + x = 0. (Draw a meaningful picture.)