| Appendix B
m Determinants

A matrix is a rectangular array of numbers. For example,

213‘
1 0 -2

is a matrix with two rows and three columns. We call A a “2 by 3" matrix. More generally,
an “m by n matrix” is one that has m rows and n columns.

The element in the ith row and jth column of a matrix is represented by a;;. In the
example above, we have

ay =2, ap =1 a;=3
ay =1 a,, =0, ay, =-2.
If A is an n by n matrix, then we associate A with a number called the determinant of

A, written sometimes as det A and sometimes as | A| with vertical bars (which do not mean
absolute value). Forn = 1 and n = 2 we have these definitions:
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= ay,(ay0ay3 — ay0a3,) — ap(ayay; — ayas) + a;3(aas, — axay,).

In Equation (2) there are some determinants of 2 by 2 matrices — each of those matri-
ces is obtained by deleting one row and one column of the original 3 by 3 matrix.
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EXAMPLE 1
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