Appendix B
B. 1 Determinants

A matrix is a rectangular array of numbers. For example,

$$
A=\left[\begin{array}{rrr}
2 & 1 & 3 \\
1 & 0 & -2
\end{array}\right]
$$

is a matrix with two rows and three columns. We call A a " 2 by 3 " matrix. More generally, an " m by n matrix" is one that has m rows and n columns.

The element in the i th row and j th column of a matrix is represented by $a_{i j}$. In the example above, we have

$$
\begin{array}{ll}
a_{11}=2, & a_{12}=1,
\end{array} a_{13}=3, ~ 子 a, ~ a_{23}=-2 .
$$

If A is an n by n matrix, then we associate A with a number called the determinant of A, written sometimes as $\operatorname{det} A$ and sometimes as $|A|$ with vertical bars (which do not mean absolute value). For $n=1$ and $n=2$ we have these definitions:

$$
\operatorname{det}[a]=a, \quad \operatorname{det}\left[\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right]=a d-b c . \xlongequal{\text { other }}\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

For a 3 by 3 matrix, we define (note the one subtraction)

$$
\begin{align*}
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] & =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \underline{a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|} \tag{2}\\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{align*}
$$

In Equation (2) there are some determinants of 2 by 2 matrices - each of those matrices is obtained by deleting one row and one column of the original 3 by 3 matrix.

Remark Notice the big difference between "the brackets":

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \leftrightarrow \text { brackets are: }[\cdots]
$$

while

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \quad \Delta \text { brackets are: |.. | }
$$

So use $[\cdot]$ for a matrix
like in absolute value and $|\cdot|$ for determinate of a matrix.

EXAMPLE 1 find $\operatorname{det}(A)$ when
Recall notation -

$$
A=\left[\begin{array}{rrr}
2 & 1 & 3 \\
3 & -1 & -2 \\
2 & 3 & 0
\end{array}\right],
$$

Solution Helpful. Think
$\oplus \begin{array}{cc}(+)\end{array}$
$\left[\begin{array}{rrr}2 & 1 & 3 \\ 3 & -1 & -2 \\ 2 & 3 & 0\end{array}\right]$
Recall
determinater recall formula. .as "Middle" one is subtracted.

$$
\operatorname{det} A=\left({ }^{+} 2\right)\left|\begin{array}{rr}
-1 & -2 \\
3 & 0
\end{array}\right|=\left({ }^{+} 1\right)\left|\begin{array}{rr}
3 & -2 \\
2 & 0
\end{array}\right|+\left({ }^{+} 3\right)\left|\begin{array}{rr}
3 & -1 \\
2 & 3
\end{array}\right|
$$

$$
\left\{\begin{array}{l}
\text { now compute the defermines of the the } \\
\text { Recall }\left|\begin{array}{c}
a \\
c
\end{array}\right|=a d-b c .
\end{array}\right.
$$

$$
=(2)((-1)(0)-(-2)(3))-(1)((3)(0)-(-2)(2))+3((3)(3)-(-1)(2))
$$

$$
=(2)(6)
$$

- (1) (4)

$$
+3(9)
$$

$$
=12-4 \quad+33
$$

$$
=41
$$

