§ 16.4 Green's Theorem

Sample (planar) curves C and regions R

Sample 1

sample 2

Sample 3

Green's Theorem
Let the curve C in the plane be positively-oriented, piecewise-smooth, simple, closed.
Let R be the region bounded by C.
Let the (scular-valued) functions P and Q have continuous $1^{\text {st }}$ partial derivative on an open set that contains D.
Then

$$
\begin{equation*}
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \tag{Green}
\end{equation*}
$$

Remark!
Letting $\vec{F} \xrightarrow[=]{\text { dat }}\langle P, Q\rangle$ and $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$ trace out C, in $\leqslant 16,2$ we got

$$
\begin{equation*}
\oint_{C} P d x+Q d y=\int_{c} \vec{F} \cdot d \vec{r}=\int_{t=a}^{t=b}\left[\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t .\right. \tag{2}
\end{equation*}
$$

Def in Green's The for the curve C traced out by \vec{r}.

1. positively oriented: if walk along C then R is to your LEFT (TL: unit circle)
2. Pice e wise-smooth: execpt for a finite numb ber of pts, \vec{r} is smooth (r^{\prime} cont, \& $\neq \vec{b}$)
3. simple: C does not intersect it self, i.e. if $a<t_{1}<t_{2}<b$ then $\vec{r}\left(t_{1}\right) \neq \vec{r}\left(t_{2}\right)$
4. closed: $\vec{r}(a)=\vec{r}(b)$

Recall If $-C$ denotes "C traced out in the opposite direction", then $\int_{-C}=-S_{c}$

Ex 1 For the triangular curve C consisting of the line segments from $(0,0)$ to $(1,0)$, followed by $\operatorname{from}(1,0)$ to $(0,1)$, then from $(0,1)$ to $(0,0)$, evaluate the line integral $\int_{c} x^{4} d x+x y d y$. Soln

$$
\int_{c} x^{4} d x+x y d y=
$$

Ex 2 For the C which is the circle $x^{2}+y^{2}=9$ traced counterclockwise, evaluate $\oint_{c}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$.

Ex 3 Do Ex 2 but with C traced clockwise. Soln. \qquad

Using Green's Theorem to find Area

$$
\oint_{c} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \text { (Green) }
$$

If $\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=1$, then

$$
\oint_{c} P d x+Q d y=\iint_{R} d A=\text { area of } R
$$

The $\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=1$ in each of the following situations.

$$
\text { 1. } \begin{aligned}
& \langle P(x, y), Q(x, y)\rangle=\langle 0, \\
& 2\langle P(x, y), Q(x, y)\rangle=\langle-y, 0\rangle \\
& 3\langle P(x, y), Q(x, y)\rangle=\left\langle-\frac{1}{2} y, \frac{1}{2} x\right\rangle
\end{aligned}
$$

So (when C is parametrized with positive orientation)

$$
\text { area of } R=\oint_{c} x d y=\oint_{c}-y d x=\frac{1}{2}-\dot{j} x d y-y d x
$$

Ex 4 Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
soln

