16.2 Line Integral of Vector-Valued Functions In this section, the path \vec{r} defined on $[a, b]$ parameteriges the curve C.

- In 16.1 we had: $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$.

$$
T L: \quad[a, b] \xrightarrow{\vec{r}} \mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{1} .
$$

The line integral of f along C is

$$
\underbrace{\int_{C} f d s}_{\text {notation }} \stackrel{d e f}{=} \int_{t=a}^{t=b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

- In 16.2 we have $[a, b] \stackrel{\stackrel{\rightharpoonup}{r}}{\rightarrow} \mathbb{R}^{n} \xrightarrow{\vec{F}} \mathbb{R}^{n}$

The line integral of \vec{F} along C is

$$
\underbrace{}_{C_{\text {dotation }} \vec{F} \cdot d \vec{r}} \stackrel{d e f}{=} \int_{t=a}^{t=b}\left[\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)\right] d t
$$

- So if $\vec{F}(x, y, z)=\left\langle F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right\rangle$ with $F_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{\prime}$ and $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, then

$$
\begin{aligned}
& \int_{c} \vec{F} \cdot d \vec{r} \stackrel{d e t}{=} \\
& \longrightarrow \int_{t=a}^{t=b}\left[\left\langle F_{1}, F_{2}, F_{3}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle\right] d t \\
& \rightarrow \text { notation } \int_{C} F_{1} d x+F_{2} d y+F_{3} d z
\end{aligned}
$$

\rightarrow where for each F_{i} (i.e. for F_{1}, F_{2}, and F_{3}):

$$
\begin{aligned}
& \int_{C} F_{i} d x=\int_{t=a}^{k=b} F_{i}(\vec{r}(t)) x^{\prime}(t) d t \\
& \int_{C} F_{i} d y=\int_{t=a}^{t=b} F_{i}(\vec{r}(t)) y^{\prime}(t) d t \\
& \int_{c} F_{i} d z=\int_{t=a}^{t=b} F_{i}(\vec{r}(t)) z^{\prime}(t) d t
\end{aligned}
$$

Similarly for \mathbb{R}^{2} wI $\vec{F}=\left\langle F_{1}, F_{2}\right\rangle$ and $\vec{r}(t)=\langle x(t), y(t)\rangle$.

Recall Definition from 12,3 (dot product)
The work done by a constant force \vec{F} acting along a dis placement of $\vec{D}=\overrightarrow{P Q}$ is

$$
W=\vec{F} \cdot \stackrel{\rightharpoonup}{D}
$$

Ex 1 When the force is not constant, define work as a line integral,
Def. The work done by a (varying) force $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ in moving an object along a curve C, traced out by the path $\vec{r}:[a, b] \rightarrow \mathbb{R}^{3}$, from the point $r(a)$ fo the pt. $r(b)$, w

$$
W=\int_{c} \vec{F} \cdot d \vec{r} \stackrel{\text { i.e. }}{=} \int_{t=a}^{t=b}\left[\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)\right] d t
$$

Ex 2 Evaluate $\int_{c} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=\langle x y, y z, z x\rangle$ and C is traced out by the path $\vec{r}(t)=\left\langle t, \pi^{2}, t^{3}\right\rangle$ for $0 \leq t \leq 1$.
Sol

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =\int_{t=a}^{t=b}\left[\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)\right] d t \\
& =\int_{t=0}^{t=1}\left\langle\begin{array}{ll}
t=1 \\
t
\end{array}\right)\left\langle(t)\left(t^{2}\right),\left(t^{2}\right)\left(t^{3}\right),\left(t^{3}\right)(t)\right\rangle \cdot\left\langle 1,2 t, 3 t^{2}\right\rangle d t \\
& =\int_{t=0}^{t=1}\left(t^{3}+2 t^{6}+3 t^{6}\right) d t \\
& =\int_{t=0}^{t=1}\left(t^{3}+5 t^{6}\right) d t=\frac{t^{4}}{4}+\left.\frac{5 t^{7}}{7}\right|_{r=0} ^{t=1}=\frac{27}{28}
\end{aligned}
$$

Ex 3 Using the \vec{r} from Ex 2, evaluate $\int_{c} x y d x$.
Soln

Ex 4 Compare Ex 2 and Ex 3. What do you notice?
Hint : Find Ex $3^{\prime} \&$ and \longleftarrow and \backsim in Ex 2 .

Ex 5 Find a parameturization of the line segment from from the point $P=\left(p_{1}, p_{2}, p_{3}\right)$ to $Q=\left(q_{1}, q_{2}, q_{3}\right)$.

Sols

$$
\left.\begin{array}{l}
\stackrel{p}{p} \\
=\left\langle q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-q_{3}\right\rangle
\end{array}\right] \Rightarrow \begin{aligned}
& x(t)=p_{1}+t\left(q_{1}-p_{1}\right) \\
& y(t)=p_{2}+t\left(q_{2}-p_{2}\right) \\
& z(t)=p_{3}+t\left(q_{3}-p_{3}\right)
\end{aligned}
$$

$$
\Rightarrow r(t)=\left\langle p_{1}+t\left(q_{1}-p_{1}\right), p_{2}+t\left(q_{2}-p_{2}\right), p_{3}+t\left(q_{3}-p_{3}\right)\right\rangle \text { for } 0 \leq t \leq 1 \text {. }
$$

Ex b Evaluate $\int_{C} y d x+z d y+x d z$ where C consists of the line segment C_{1} from $P=(2,0,0)$ to $Q=(3,4,5)$ followed by the vertical line segment C_{2} from $Q=(3,4,5)$ to $R=(3,4,0)$.

Soln BTW: Here $\vec{F}(x, y, z)=\langle y, z, x\rangle$ and

$$
\begin{aligned}
\int_{c} y d x+z d y+x d z & =\int_{c} \vec{F} \cdot d r=\int_{c_{1}} \vec{F} \cdot d \vec{r}+\int_{c_{2}} \vec{F} \cdot d \vec{r}= \\
& =\int_{c_{1}} y d x+z d y+x d z+\int_{c_{2}} y d x+z d y+x d z
\end{aligned}
$$

1. For $c_{1}: r(t)=\langle 2+1 t, 0+4 t, 0+5 t\rangle=\langle 2+t, 4 t, 5 t\rangle$ for $0 \leq t \leq 1$.

$$
\begin{aligned}
& =\left(\frac{29 t^{2}}{2}+10 t\right) \left\lvert\, \begin{array}{l}
t=1 \\
t=0
\end{array}=\frac{29}{2}+10=\frac{49}{2}\right.
\end{aligned}
$$

2. For $C_{2} ; r(t)=\langle 3+0 t, 4+$ ot, $5+-5 t\rangle=\langle 3,4,5-5 t\rangle$ for $0 \leq t \leq 1$.

$$
\begin{aligned}
& \int_{c_{1}} \underbrace{y}_{1} \underbrace{d x}_{1} \underbrace{z d y}_{1}+\underbrace{x}_{1} d z \\
& =\int_{\pi=0}^{t=1}\left[\frac{1}{(4)}(0)+\frac{1}{(5-5 t)(0)}+\frac{1}{(3)}(-5)\right] d t=\int_{\pi=0}^{t=1}-15 d t=-\left.15 t\right|_{t=0} ^{t=1}=-15
\end{aligned}
$$

3. $\int_{c} y d x+z d y+x d z=\frac{49}{2}-15=\frac{49}{2}-\frac{30}{2}=\frac{19}{2}$.
