16.1 Line Integrals of Scalar-valued Functions

Def: (here, n is 2 or 3)
Let
$$\vec{r}$$
 : $[a,b] \rightarrow \mathbb{V}^n$ be a smooth parameter i satism of a curve C .
Let the function $f: \mathbb{R}^n \rightarrow \mathbb{R}^1$ be continuous on $[a,b]$.
The line integral of f over/along C is
 $\int f ds = \int f(\vec{r}(t)) ||\vec{r}'(t)|| dt$ (1)
 c eva
 $\int f ds = \langle x_1(t) \rangle, \dots, \chi_n(t) \rangle \in \mathbb{V}^n$ a vector in \mathbb{R}^n
let $\vec{r}_{pt}(t) = \langle x_1(t) \rangle, \dots, \chi_n(t) \rangle \in \mathbb{R}^n$, a a point in \mathbb{R}^n
 In (1) above $f(\vec{r}(t))$ is really $f(\vec{r}_{pt}(t))$.
Remk Other (better?) terms for Line Integral are : Path Integral and Curve Integral.
 $\frac{R_{mk}}{r_{n}} f(\vec{r}_{1}(k)) ||\vec{r}'(t)|| dt = \int fds = \int_{a_2}^{b_2} f(\vec{r}_{2}(b)) ||\vec{r}'_{2}(t)|| dt$.
 $\frac{R_{mk}}{r_{n}} f(\vec{r}_{1}(k)) ||\vec{r}'_{1}(t)|| dt = \int fds = \int_{a_2}^{b_2} f(\vec{r}_{2}(b)) ||\vec{r}'_{2}(t)|| dt$.
 $\frac{Warning}{r_{n}}$ The value of a lore integral by 2 fixed Points
 c an change if we change the path by the 2 point ζ .
 $r_{n} = \int_{a_1}^{b_2} f(\vec{r} ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_{a_2}^{b_2} f(ds) = \int_{a_1}^{b_2} f(ds) = \int_$

16.1.1

Recall
$$S_{c} f ds = \frac{e^{-k}}{t \cdot a} \int (f(t)) || f'(t) || dt$$

T need to find \vec{r} (t) $\int [f(t)] || f(t) || dt$
Ex 1 E-valuate $\int_{c} (2 + \chi^{2} \chi) ds$ where C is the upper hulf of
the unit circle $\chi^{2} + \chi^{2} = 1$, orientated Counter Wock size.
Soln First find a smooth parameter (igotion \vec{r} of C
 $\int f(t) = \langle \cos t, \sin t \rangle$ for $0 \le t \le T$.
 ψ $\chi(t) = \cot t$ is $\chi(t) = \sin t$
 \vec{r} $(t) = \langle \cos t, \sin t \rangle$ for $0 \le t \le T$.
 ψ $\chi(t) = \cot t$ is $\chi(t) = \sin t$
 \vec{r} $(t) = \langle -\sin t \rangle^{2} + (\cos t)^{2}$ $= 1$.
So
 $\int f ds = \int \int (f(t)) || = \int (-\sin t)^{2} + (\cos t)^{2} || = 1$.
So
 $\int f ds = \int \int (2 + \cos^{2} t \sin t) || \vec{r}'(t) || dt$
 $= \int (2 + \cos^{2} t \sin t) || \vec{r}'(t) || dt$
 $= \int (2 + \cos^{2} t \sin t) || \vec{r}'(t) || dt$
 $= \int (2 + \cos^{2} t \sin t) || \vec{r}'(t) || dt$
 $= \int (2 + \cos^{2} t \sin t) || \vec{r}'(t) || dt$

$$\begin{array}{c} \operatorname{Recall} & \operatorname{S_{c}} f \, \mathrm{ds} = \frac{e^{-b}}{4 - a} \quad \operatorname{S_{c}} (f(t)) \ || \, \overline{r}^{-}(t) || \ \mathrm{dt} & ||$$

16,1.4 Mhat is represented by a line integral of a IR-valled function? Recall the Arc Length lecture (\$ 13.3). • Given a curve (parameterized by r(t) = <x(t), y(t), 2(t)), actsb. · Goal: find the arc length AL of C. Step1 Partition the interval I a, b]. Make a seletion to where t it's to it's Axi Axi Ayi At: := t: - ti-1 7 $t_{o} = \alpha \cdot t_{1} \cdot t_{2} \cdots \cdot t_{i-1} \cdot t_{i} \cdots \cdot t_{n-1} \cdot t_{n} = b$ x L F(b) y Let $P_j = \vec{r}_{pt}$ (tj) and $P_j^* = \vec{r}_{pt}$ (tj) <u>Step 2</u> Approx. AL as a sum of "typical elements" AL= = ALof part of & bow Pin and Pi) & = 11 53, 11 a vector a sector Step 3 Approx. a typical clement. We got $\overline{\Delta S}_i \approx \overline{\Gamma}'(t^*_i) \Delta t_i$ $\| \Delta S_i \| \ll \| \hat{r}'(t_i) \| \Delta t_i$ a scalar step 4 Step 2 and stop 3 => AL ~ Z IIr'(ti) || bt Step 5 Take the limit as $\Delta t \rightarrow 0$ (so taking more and more t_i 's) to get $AL = \lim_{dt \rightarrow 0} Z || \Delta s_i || = \lim_{dt \rightarrow 0} Z || \tilde{r}'(t_i) || \Delta t = \int_{dt} || \tilde{r}'(t_i) || \Delta t = \int_{dt} || \tilde{r}'(t_i) || dt$ $At \Rightarrow a$ Helpful notation: Take-AwaysRecall we had: $d\vec{s} \approx \Delta \vec{s}_i \approx \vec{r}'(t_i^*) \Delta t_i$ • $d\hat{s} := \hat{\Gamma}'(t) dt$ 45 ~1) ~5; 11 ~ 11 r'(t*) 11 At. • ds think "11 ds 11" := 11 r'(t) 11 dt = arc length of C Ex3 ∫ ds ≝ ∫ 1ds Hint: $\int_{C} 1 ds \stackrel{def}{=} \int_{a}^{b} f(\vec{r}(t)) \|\vec{r}'(t)\| dt = \int_{a}^{b} |\vec{r}'(t)| dt = \int_{a$

Ex 4 Let curve C have smooth parametergation $\vec{r}(t) = \langle \chi(t), \chi(t) \rangle$, for $a \leq t \leq b$. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and positive-valued. Construct a "fence" with base C in $\chi\gamma$ -plane (= ground) and height $f(\chi, \gamma)$. Then proceed similarly as we did with AL.

16,1.5

a typical element is a (black) f(x(t), y(t))rectangle Ri $\vec{r}_{pt}(t) = (x(t), y(t))$ Scfds Z f(r(+*) 11 A311 ~ ↑ 15 × 113311 , f(r(+,) || is || se area of Ri (height of Ri) (length of buse of Ri) => Setds x E (area of Ri) x the area (of one side) of the whole fence. Question:

The line integral 5 fds represents the area (of one side) of the fence

<u>Rink</u> The (linear) mass density function S gives the mass per unit length. The SI (standard international unit) is <u>kg/m</u>.

16.1.6

Ex5 Let a wire lie along curve C having a smooth parameterization $\vec{r}(t) = \langle \chi(t), \chi(t), \chi(t) \rangle$ for a $\leq t \leq b$. Let S(t) be the mass density of the wire at the point ($\chi(t), \chi(t), \chi(t), \chi(t)$) on C and $S : [a, b] \rightarrow \mathbb{R}$ be continuous.

The line integral SSds represents total mass of the wire.

Soln.

- ScSdS ≈ ∑S(r(+,*)) || AS || ~ mass of whole w
- From AL: • From AL: $P_{i-1} \Rightarrow S(F(t_i), || AS || \Rightarrow mass af point of wire btw$ $<math>F_{AX_i} \Rightarrow Mass per \cdot length of P_{i-1} and P_i$ $P_i = mass per \cdot length of P_{i-1} and P_i$ $T = P_i$ with length somewightw $T = P_i$ and P_i

This finishes 16.1