16.) Line Integrals of Scalar-valued Functions

Recall: \& 13,3 Arc Length (AL) from $13,3,1$ and $13,3,2$

- Given a curve ξ parameterized by $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$
- Goal: Find the arc length AL of ζ, $\longrightarrow a \leq t \leq b$.
- Game Plan: express the ArcLength as an integral w.r.t. A.

So Want

$$
A L=\int_{a}^{b} \underbrace{\text { some mess involving } t)}_{a \cdot k \cdot a \cdot \text { (a function } f t)=[a, b] \rightarrow \mathbb{R}^{1}} d t
$$

*) An intuitive approach (will use this approach lots).

$$
\begin{aligned}
& t_{0}=a t_{1} t_{2} \ldots t_{t_{i-1}^{t_{i-1}} t_{i}}^{t_{i}}: \cdots t_{n-1} t_{n}=b \\
& A L \approx \sum_{i=1}^{n}\|\underbrace{\vec{\Delta} \vec{S}_{i}}_{\Gamma}\| \approx \sum_{i=1}^{n} \text { (mess) } \Delta t_{i}
\end{aligned}
$$

Typical element
$\overrightarrow{S S}_{i}: \stackrel{\text { def }}{=} \vec{r}\left(t_{i}\right)-\vec{r}\left(t_{i-1}\right) \stackrel{\tilde{\sim}}{\vec{r}^{\prime}\left(t_{i}\right)} \overbrace{\Delta t_{i}}$

$$
\Rightarrow\left\|\stackrel{\rightharpoonup}{\Delta S_{i}}\right\| \approx\left\|r^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}
$$

Now add up all our "typical elements" $\left\|\Delta S_{i}\right\|$

$$
A L \approx \sum_{i=1}^{n}\left\|\overrightarrow{\Delta s}_{i}\right\| \approx \sum_{i=1}^{n}\left\|r^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}
$$

and let $\Delta t \rightarrow 0$ (sc $n \rightarrow \infty$) to get

$$
A L=\int_{a}^{b}\left\|r^{\prime}(t)\right\| d t
$$

Helpful notation:
Recall we had:

$$
\begin{equation*}
\cdot d \vec{s}:=\vec{r}^{\prime}(t) d t \tag{i}
\end{equation*}
$$

End of AL Recall

Line Integrals of Scalar-valued Functions
Goal Given a curve C (where $n=2$ or 3)

- parametrized by $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n} \leftarrow \vec{r}(t)$ ib $\langle x(t), y(t)\rangle \sigma\langle\langle x(t), y(t), z(t)$
- and a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$

Want to integrate f along the curve C, i.e. make sense of

$$
\int_{c} f d s
$$

which we call the line integral of f over C.
Picture for $n=2$ (i.e. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\left.\dot{r}:[a, b] \rightarrow \mathbb{R}^{2}\right]$

- Note if $f(x, y)=1$ (for all (x, y)) then would want

$$
\int_{c} f d s=\text { arclength of } C
$$

Adjust the AL picture by add the $f\left(\dot{\Gamma}\left(t_{i}\right)\right):=P_{i}$

$$
t_{0}=a t_{1} t_{2} \cdots \cdot \underbrace{1}_{t_{t_{i}}^{t_{i-1}} t_{i} \cdots \cdots t_{n-1} t_{n}=b}:=t_{i-}^{t_{i-1}}
$$

So now atypical element" is

$f\left(\vec{r}\left(t_{i}\right)\right)\left\|\overrightarrow{\Delta S}_{i}\right\| \stackrel{n_{0}+\tau}{=} f\left(\vec{r}\left(t_{i}\right)\right)\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}$
Add up all the typical elements to get

$$
\int_{c} f d s \approx \sum_{i} f\left(\vec{r}\left(t_{i}\right)\right)\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}
$$

Now let $\Delta t \rightarrow 0$ to get

$$
\int_{c} f d s=\int_{t=a}^{\pi=b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Def. (here, n is 2 or 3)
Let $\vec{r}:[a, b] \rightarrow \mathbb{R}_{n}^{n}$ be a smooth parameterization of a curve C. Let the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ be continuous on $[a, b]$.
The line integral of f overlalong C is

$$
\int_{c} f d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Ex 1. Application

Any physical interpretation of a line integral $\int_{c} f(x, y) d s$ depends on the physical interpretation of the function f. Suppose that $\rho(x, y)$ represents the linear density at a point (x, y) of a thin wire shaped like a curve C. Then the mass of the part of the wire from P_{i-1} to P_{i} in Figure 1 is approximately $\rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$ and so the total mass of the wire is approximately $\sum \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}$. By taking more and more points on the curve, we obtain the mass m of the wire as the limiting value of these approximations:

$$
m=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}=\int_{C} \rho(x, y) d s
$$

The line integral of f overlalong C is

$$
\int_{c} f d s=\int_{a}^{b} f(\stackrel{\rightharpoonup}{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Ex 2 Evaluate $\int_{c}\left(2+x^{2} y\right) d s$ where
C is the upper half of the unit circle $x^{2}+y^{2}=1$, orientated counter clock sise.
Soln. Find a smooth parametrization of C

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{r}(t)=\langle\cos t, \sin t\rangle \text { for } 0 \leq t \leq \pi\rangle \\
\Rightarrow & \vec{r}^{\prime}(t)=\langle-\sin t, \cos t\rangle \\
& \left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}}=1 .
\end{aligned}
$$

So

$$
\begin{aligned}
\int_{c} f d s & =\int_{t=0}^{t=\pi}\left(2+\cos ^{2} t \sin t\right)\left\|r^{\prime}(t)\right\| d t \\
& =\int_{0}^{\pi}(2+\underbrace{\left.\cos ^{2} \pi \sin t\right)} d t= \\
& =\left[2 t-\frac{\cos ^{3} t}{3}\right] \quad \text { let } u=\cos t \ldots=\pi \\
& =\left[2 \pi+\frac{2}{3}\right. \\
& =[2 \pi
\end{aligned}
$$

Recall:
The line integral of f overlalong C is

$$
\int_{c} f d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Ex 3 Evaluate $\int_{c} 2 x d s$ where C consists of the curves C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by C_{2} which is the line segment from $(1,1)$ to $(1,2)$.
Soln sketch $C \stackrel{\text { i.e }}{=} C_{1} \cup C_{2}$. Here $f(x, y)=2 x$.

$$
\begin{aligned}
& \text { 1. For } C_{1}: \quad r_{1}(t)=\left\langle t, t^{2}\right\rangle \text { for } 0 \leq t \leq 1 \text {. } \\
& \int_{c_{1}} f d s=\int_{t=0}^{t=1} \frac{f\left(\vec{r}_{1}(t)\right)}{!}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& =\int_{t=0}^{t=1} \sqrt{2 \pi} \sqrt{1+(2 t)^{2}} d t \\
& =\int_{t=0}^{k=1} 2 t \sqrt{1+4 t^{2}} d t=\frac{1}{4} \int_{\pi=0}^{t=1}\left(1+4 t^{2}\right)^{1 / 2}(8 t) d t \\
& =\left.\frac{1}{4} \frac{2}{3}\left(1+4 t^{2}\right)^{3 / 2}\right|_{t=0} ^{t=1}=\frac{1}{6}\left[(1+4)^{3 / 2}-1^{3 / 2}\right]=\frac{5 \sqrt{5}-1}{6} \text {. }
\end{aligned}
$$

2. For c_{2} : $\quad r_{2}(t)=\langle 1, t\rangle$ for $1 \leq t \leq 2$.

$$
\begin{aligned}
\int_{c_{2}} f d s & =\int_{t=1}^{t=2} f\left(\vec{r}_{2}(t)\right)\left\|\vec{r}_{2}^{\prime}(t)\right\| d t=\int_{t=1}^{t s^{-2}} 2(1) \sqrt{0^{2}+1^{2}} d t \\
& =\int_{t=1}^{t^{2}-2} 2 d t=\left.2 t\right|_{t=1} ^{t=2}=2(2-1)=2,
\end{aligned}
$$

3. For allofc: $\int_{c} f d s=\int_{c_{1}} f d s+\int_{c_{2}} f d s=\frac{5 \sqrt{2}-1}{6}+\frac{12}{6}=\frac{5 \sqrt{2}+11}{6}$
