\$ 15.5 Triple Integrals in Rectangular (i.e. Cartesian) Coords B.S.]
Dif The volume V(D) if a (nice)
tobsed and bounded solid region D in (3D) space. Then
V(D) = (SS dV . 4 what does SS mean?
V(D) = (SS dV . 4 what does SS mean?
Key Idea To make sense of SSS , recall SS (\$ 15.1)
Setting
(2D) Have a region R in the ng-plane of the form :
(4d4 R =
$$\int (ry, y) \in \mathbb{R}^2$$
 : $a \leq x \leq b$ and $g_1(x) \leq y \leq g_1(x)$?
 $f = g_2(x)$ with $y = g_1(x)$ and $y = g_2(x)$
 $g = g_1(x)$ continuous on Eab]
of a b
(4rdg) R = $\int (ry, y) \in \mathbb{R}^2$: $c \leq y \leq d$ and $h_1(y) \leq x \leq h_2(y)$?
(4rdg) R = $\int (x, y, z) \in \mathbb{R}^3$: $(x, y) \in \mathbb{R}$ and $z = h_2(y)$
 $e^{-\pi h_1(y)}$ $x = h_2(y)$ continuous on E(x, d)
 $het D = \int (x, y, z) \in \mathbb{R}^3$: $(x, y) \in \mathbb{R}$ and $l(x, y) \leq z \leq u(x, y)$?
 $v (D) = SSS dV$
 $V (D) = SSS dV$
 $V (D) = SSS dV$
 $P = g_1(x)$
 $V (D) = SSS dV$
 $P = f_2(x, y)$
 $P = f_2(x, y)$

