§ 15.5 Triple Integrals in Rectangular (ie .Cartesian) Coords
D\&f The volume $V(D)$ of a (nice)
closed and bounded solid region D in (3D) space. Then notation

$$
V(D)=\iiint_{D} d V \text {. \&what does SSS mean? }
$$

Key Idea To make sense of $\underset{D}{\text { SSS }}$, recall $\int_{R}^{S S}(\xi 15.1)$
Setting
(2D) Have a region R in the $x y$-plane of the form:
$(\operatorname{dg} d x) \quad R=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b\right.$ and $\left.g_{1}(x) \leq y \leq g_{2}(x)\right\}$

$$
\left\{\begin{array}{lr}
y=g_{2}(x) & \text { with } y=g_{1}(x) \text { and } y=g_{2}(x) \\
y=g_{1}(x) & \text { continuous on }[a, b]
\end{array}\right.
$$

or

(dxdy) $\quad R=\left\{(x, y) \in \mathbb{R}^{2}: c \leq y \leq d\right.$ and $\left.h_{1}(y) \leq x \leq h_{2}(y)\right\}$
 with $x=h_{1}(y)$ and $x=h_{2}(y)$ continuous on $[c, d]$
(Now 3D)
Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \leqslant R\right.$ and $\left.\ell(x, y) \leq z \leq u(x, y)\right\}$

Figure: textbook p 919
Then the volume of D is

$$
\begin{aligned}
V(D) & =\iint S_{D} d V \\
& \left.\stackrel{d f}{=} \iint_{R}\left[\begin{array}{l}
z=u(x, y) \\
z=l(x, y)
\end{array}\right] d z\right] d A
\end{aligned}
$$

note reduced SSS to a

Def. In above setting, if $w=f(x, y, z)$ is continuous on D, then

$$
\left.\iiint_{D} f(x, y, z) d V \stackrel{d f}{=} \iint_{R} \int_{z=l(x, y)}^{z=u(x, y)} f(x, y, z) d z\right] d A_{1}
$$

Ex 1. Evaluate $\iiint_{B} x y z^{2} d V$ where B is the rectangular box

$$
B=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 1,-1 \leq y \leq 2,0 \leq z \leq 3\right\} .
$$

Soln

$$
\iiint_{B} x y z^{2} d V=
$$

Ex 2. Evaluate $\iint_{D} z d V$ where D is the solid (so 3D) $15,5,3$ (tetrahedon) bounded by the 4 planes:
$\underbrace{x=0}_{y z \text {-plane }}$ and $\underbrace{y=0}_{x z \text {-plane }}$ and $\underbrace{z=0}_{x y \text {-plane }}$ and, $x+y+z=1$

Soln

$$
\begin{array}{ll}
R=\left\{(x, y) \varepsilon \mathbb{R}^{2}:\right. & \leq y \leq \\
D=\left\{(x, y, z) \varepsilon \mathbb{R}^{3}:\right. &
\end{array}
$$

Ex 3 Evaluate $\iiint_{D} \sqrt{x^{2}+z^{2}} d V$ where D is the solid (so $3 D$) $15,5,4$ bounded by $\quad \frac{y=x^{2}+z^{2}}{\text { paraboloid }} \quad$ and $\quad \frac{y=4}{\text { plane. }}$

Sol

- Try 1-view D as a solid over region R_{1} in $x y$-plane.

R_{1} is as shown above.

$$
\begin{aligned}
& D^{\prime}=\xi(x, y, z) \in \mathbb{R}^{3}:(x, y) \in R, \text { and } \quad \leq z \leq \\
& T L: y=x^{2}+z^{2} \Leftrightarrow z^{2}=y-x^{2} \Leftrightarrow z= \pm \sqrt{y-x^{2}}
\end{aligned}
$$

\qquad

Continued Ex Evaluate $\iint_{D} \sqrt{x^{2}+z^{2}} d V$ where D is the solid (s ob)) 15.5 .5 bounded by $\frac{y=x^{2}+z^{2}}{\text { paraboloid }}$ and $\frac{y=4}{\text { plane. }}$

- Try 2 - view D as a solid over region R_{2} in \qquad -plane.

$$
\begin{aligned}
& R_{2}=\left\{(\ldots) \in \mathbb{R}^{2}:\{\text { write an inequality }\right. \\
& D=\left\{(x, y, z) \in \mathbb{R}^{3}:(\ldots) \in R_{2} \text { and } \square \leq \ldots\right.
\end{aligned}
$$

