

Our old trustly friend, Cartesian coordinates, are handy when dealing with boxy objects.
Our new friend, polar coordinates, are handy when dealing with windy/circular objects.
In this handout, let's abbreviate:
Cartesian coordinates by CC and polar coordinates by PC .

Basics

Let's start with a point $P \in \mathbb{R}^{2}$. Then P has a unique CC representation (x, y).
DEFINITION A representation of this point P in polar coordinates is any (r, θ) where

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

\square

Given an (x, y), how are you going to find such an (r, θ) ? Let's start by asking Mr. Happy Unit Circle. Next, some useful observations.

- When working in CC, $[(x, y)=(\tilde{x}, \tilde{y})]$ if and only if $[x=\tilde{x}$ and $y=\tilde{y}]$.
- If the point P has PC (r, θ), then P also has PC $(r, \theta+2 \pi)$. In other word, in PC,

$$
(r, \theta) \quad \text { represents the same point as } \quad(r, \theta+2 \pi) .
$$

This is because the point P has the unique CC (x, y) where

$$
\begin{aligned}
& x=r \cos \theta \stackrel{\text { note }}{=} r \cos (\theta+2 \pi) \\
& y=r \sin \theta \stackrel{\text { note }}{=} r \sin (\theta+2 \pi) .
\end{aligned}
$$

- If the point P has $\mathrm{PC}(-r, \theta)$, then P also has $\mathrm{PC}(r, \theta+\pi)$. In other word, in PC ,

$$
(-r, \theta) \quad \text { represents the same point as } \quad(r, \theta+\pi) .
$$

This is because the point P has the unique CC (x, y) wher ${ }^{1}$

$$
\begin{aligned}
& x=-r \cos \theta \stackrel{\text { note }}{=}+r \cos (\theta+\pi) \\
& y=-r \sin \theta \stackrel{\text { note }}{=}+r \sin (\theta+\pi) .
\end{aligned}
$$

So is given a point P in $\mathrm{PC}(r, \theta)$, we can find it's (unique) $\mathrm{CC}(x, y)$ by using the equation (1). While if given a point P in CC (x, y), how to find a PC $(r, \theta) ? \ldots$
There are so many choices. Well, e.g.: we can use 2^{2}

$$
r=\sqrt[+]{x^{2}+y^{2}} \quad \text { and } \quad \theta= \begin{cases}\arctan \left(\frac{y}{x}\right) & \text { if } x>0 \\ \arctan \left(\frac{y}{x}\right)+\pi & \text { if } x<0 \\ \frac{\pi}{2} & \text { if } x=0 \text { and } y>0 \\ \frac{-\pi}{2} & \text { if } x=0 \text { and } y<0\end{cases}
$$

which gives $r \geq 0$ and $\frac{-\pi}{2} \leq \theta<\frac{3 \pi}{2}$. Can you think of other choices?

[^0]
Polar Equations

Consider a polar equation $r=f(\theta)$. You can think of such a polar equation as a describing a parametric curve given in CC by (use equations in (11),

$$
\begin{align*}
x(\theta) & =f(\theta) \cos \theta \\
y(\theta) & =f(\theta) \sin \theta . \tag{2}
\end{align*}
$$

Graphing Polar equation $r=f(\theta)$
The period of $f(\theta)=\cos (k \theta)$ and of $f(\theta)=\sin (k \theta)$ is $\frac{2 \pi}{k}$.
To sketch these graphs, divide the period by 4 and make the chart.
We divide the period by 4 when making the chart in order to detect the max $/ \mathrm{min} /$ zero's of the function $r=f(\theta)$.

Area

Let $A(r, \theta)$ be the area of a sector of a circle with radius r and cental angle θ radians.
Comparing $A(r, \theta)$ to the area of the whole circle lead us to a proportion, which we can solve for $A(r, \theta)$:
$\frac{A(r, \theta)}{A(r, 2 \pi)}=\frac{\theta}{2 \pi} \quad \Longrightarrow \quad \frac{A(r, \theta)}{\pi r^{2}}=\frac{\theta}{2 \pi} \quad \Longrightarrow \quad A(r, \theta)=\frac{\theta}{2 \pi} \frac{\pi r^{2}}{1} \quad \Longrightarrow \quad A(r, \theta)=\frac{\theta r^{2}}{2}$.
So, the area of a sector of a circle with radius r and central angle $\Delta \theta$ is

$$
A(r, \Delta \theta)=\frac{1}{2} r^{2}(\Delta \theta) .
$$

Now consider a function $r=f(\theta)$ which determines a curve in the plane where
(1) $f:[\alpha, \beta] \rightarrow[0, \infty]$
(2) f is continuous on $[\alpha, \beta]$
(3) $\beta-\alpha \leq 2 \pi$.

Then the area bounded by polar curves $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\frac{1}{2} \int_{\theta=\alpha}^{\theta=\beta}[f(\theta)]^{2} d \theta
$$

Arc Length

If $r=f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r, \theta)$ traces the curve $r=f(\theta)$ exactly once as θ runs from α to β, then the arc) length of the curve is

$$
\mathrm{AL}=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Why is the so? Well, veiwing the curve that $r=f(\theta)$ traces out as a parametric curve as given in (2), we already know that

$$
\mathrm{AL}=\int_{\alpha}^{\beta} \sqrt{\left[x^{\prime}(\theta)\right]^{2}+\left[y^{\prime}(\theta)\right]^{2}} d \theta
$$

And

$$
\begin{aligned}
{\left[x^{\prime}(\theta)\right]^{2}+\left[y^{\prime}(\theta)\right]^{2}=} & {\left[D_{\theta}(f(\theta) \cos \theta)\right]^{2}+\left[D_{\theta}(f(\theta) \sin \theta)\right]^{2} } \\
= & {\left[-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta\right]^{2}+\left[{ }^{+} f(\theta) \cos \theta+f^{\prime}(\theta) \cos \theta\right]^{2} } \\
= & {[f(\theta)]^{2} \sin ^{2} \theta-2 f(\theta) f^{\prime}(\theta) \cos \theta \sin \theta+\left[f^{\prime}(\theta)\right]^{2} \cos ^{2} \theta } \\
& +[f(\theta)]^{2} \cos ^{2} \theta+2 f(\theta) f^{\prime}(\theta) \cos \theta \sin \theta+\left[f^{\prime}(\theta)\right]^{2} \sin ^{2} \theta \\
= & {[f(\theta)]^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left[f^{\prime}(\theta)\right]^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) } \\
= & {[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2} } \\
= & {[r]^{2}+\left[\frac{d r}{d \theta}\right]^{2} . }
\end{aligned}
$$

[^0]: ${ }^{1}$ Recall $\cos (\theta+\pi)=-\cos \theta$ and $\sin (\theta+\pi)=-\sin \theta$.
 ${ }^{2}$ Recall, $\frac{-\pi}{2}<\arctan \theta<\frac{\pi}{2}$.

