

Polar Coordinates

 $Sin\theta = \frac{OPP}{hyp} = \frac{4}{r}$ $\Rightarrow y = r \sin \theta$

Our old trustly friend, Cartesian coordinates, are handy when dealing with boxy objects. Our new friend, polar coordinates, are handy when dealing with windy/circular objects. In this handout, let's abbreviate:

 $Cartesian\ coordinates\ {\it by\ CC}$ and $polar\ coordinates\ {\it by\ PC}$.

Basics

Let's start with a point $P \in \mathbb{R}^2$. Then P has a unique CC representation (x, y). DEFINITION A representation of this point P in polar coordinates is any (r, θ) where

$$x = r \cos \theta$$
 and $y = r \sin \theta$.

Given an (x, y), how are you going to find such an (r, θ) ? Let's start by asking Mr. Happy Unit Circle. Next, some useful observations.

- When working in CC, $[(x,y) = (\tilde{x},\tilde{y})]$ if and only if $[x = \tilde{x} \text{ and } y = \tilde{y}]$.
- If the point P has PC (r, θ) , then P also has PC $(r, \theta + 2\pi)$. In other word, in PC,

$$(r,\theta)$$
 represents the same point as $(r,\theta+2\pi)$.

This is because the point P has the unique CC (x, y) where

$$x = r \cos \theta \stackrel{\text{note}}{=} r \cos(\theta + 2\pi)$$

 $y = r \sin \theta \stackrel{\text{note}}{=} r \sin(\theta + 2\pi)$.

• If the point P has PC $(-r, \theta)$, then P also has PC $(r, \theta + \pi)$. In other word, in PC,

$$(-r, \theta)$$
 represents the same point as $(r, \theta + \pi)$.

This is because the point P has the unique CC (x, y) where

$$x = -r\cos\theta \stackrel{\text{note}}{=} +r\cos(\theta + \pi)$$
$$y = -r\sin\theta \stackrel{\text{note}}{=} +r\sin(\theta + \pi).$$

Conversion

 $tand = \frac{\sin \theta}{\cos \theta} = \frac{yr}{yr} = \frac{t}{x}$

A point $P \in \mathbb{R}^2$ with CC (x, y) and PC (r, θ) satisfies the following. By definition of polar coordinates:

$$x = r \cos \theta$$
 and $y = r \sin \theta$. (1)

And so by basic trigonometry:

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \begin{cases} \frac{y}{x} & \text{if } x \neq 0 \\ \text{DNE} & \text{if } x = 0 \end{cases}$

So is given a point P in PC (r, θ) , we can find it's (unique) CC (x, y) by using the equation \square . While if given a point P in CC (x, y), how to find a PC (r, θ) ? ... There are so many choices. Well, e.g.: we can use \square

$$r = \sqrt[+]{x^2 + y^2} \qquad \text{and} \qquad \theta = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0 \\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0 \\ \frac{-\pi}{2} & \text{if } x = 0 \text{ and } y < 0 \end{cases},$$

which gives $r \geq 0$ and $\frac{-\pi}{2} \leq \theta < \frac{3\pi}{2}$. Can you think of other choices?

Recall $\cos(\theta + \pi) = -\cos\theta$ and $\sin(\theta + \pi) = -\sin\theta$.

²Recall, $\frac{-\pi}{2}$ < arctan $\theta < \frac{\pi}{2}$.

Polar Equations

Consider a polar equation $r = f(\theta)$. You can think of such a polar equation as a describing a parametric curve given in CC by (use equations in (1)),

$$x(\theta) = f(\theta)\cos\theta$$

$$y(\theta) = f(\theta)\sin\theta.$$
 (2)

Graphing Polar equation
$$r = f(\theta)$$

The period of $f(\theta) = \cos(k\theta)$ and of $f(\theta) = \sin(k\theta)$ is $\frac{2\pi}{k}$.

To sketch these graphs, divide the period by 4 and make the chart.

We divide the period by 4 when making the chart in order to detect the max/min/zero's of the function $r = f(\theta)$.

Area

Let $A(r,\theta)$ be the area of a sector of a circle with radius r and cental angle θ radians.

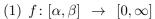
Comparing $A(r,\theta)$ to the area of the whole circle lead us to a proportion, which we can solve for $A(r,\theta)$:

$$\frac{A(r,\theta)}{A(r,2\pi)} \; = \; \frac{\theta}{2\pi} \qquad \Longrightarrow \qquad \frac{A(r,\theta)}{\pi r^2} \; = \; \frac{\theta}{2\pi} \qquad \Longrightarrow \qquad A(r,\theta) \; = \; \frac{\theta}{2\pi} \; \frac{\pi r^2}{1} \qquad \Longrightarrow \qquad A(r,\theta) \; = \; \frac{\theta r^2}{2} \; .$$

So, the area of a sector of a circle with radius r and central angle $\Delta\theta$ is

$$A(r,\Delta\theta) = \frac{1}{2} r^2 (\Delta\theta) .$$

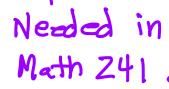
Now consider a function $r = f(\theta)$ which determines a curve in the plane where



(2) f is continuous on $[\alpha, \beta]$

(3)
$$\beta - \alpha \leq 2\pi$$
.

Then the area bounded by polar curves $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is



$$A = \frac{1}{2} \int_{\theta=\alpha}^{\theta=\beta} [f(\theta)]^2 d\theta .$$

If $r = f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r, \theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs from α to β , then the arc) length of the curve is

$$AL = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Why is the so? Well, veiwing the curve that $r = f(\theta)$ traces out as a parametric curve as given in (2), we already know that

$$AL = \int_{\Omega}^{\beta} \sqrt{\left[x'(\theta)\right]^2 + \left[y'(\theta)\right]^2} d\theta.$$

And

$$\begin{aligned} \left[x'\left(\theta\right)\right]^{2} + \left[y'\left(\theta\right)\right]^{2} &= \left[D_{\theta}\left(f\left(\theta\right)\cos\theta\right)\right]^{2} + \left[D_{\theta}\left(f\left(\theta\right)\sin\theta\right)\right]^{2} \\ &= \left[{}^{-}f\left(\theta\right)\sin\theta + f'\left(\theta\right)\cos\theta\right]^{2} + \left[{}^{+}f\left(\theta\right)\cos\theta + f'\left(\theta\right)\cos\theta\right]^{2} \\ &= \left[f\left(\theta\right)\right]^{2}\sin^{2}\theta - 2f\left(\theta\right)f'\left(\theta\right)\cos\theta\sin\theta + \left[f'\left(\theta\right)\right]^{2}\cos^{2}\theta \\ &+ \left[f\left(\theta\right)\right]^{2}\cos^{2}\theta + 2f\left(\theta\right)f'\left(\theta\right)\cos\theta\sin\theta + \left[f'\left(\theta\right)\right]^{2}\sin^{2}\theta \\ &= \left[f\left(\theta\right)\right]^{2}\left(\sin^{2}\theta + \cos^{2}\theta\right) + \left[f'\left(\theta\right)\right]^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) \\ &= \left[f\left(\theta\right)\right]^{2} + \left[f'\left(\theta\right)\right]^{2} \\ &= \left[r\right]^{2} + \left[\frac{dr}{d\theta}\right]^{2} \end{aligned}.$$