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Our old trustly friend, Cartesian coordinates, are handy when dealing with bozy objects.
Our new friend, polar coordinates, are handy when dealing with windy/circular objects.
In this handout, let’s abbreviate:
Cartesian coordinates by CC and polar coordinates by PC .
Let’s start with a point P € R?. Then P has a unique CC representation (z,).
DEFINITION A representation of this point P in polar coordinates is any (r, ) where
x = 1 cosf and y = r sinf . <

Given an (x, y), how are you going to find such an (T, 9) 7 Let’s start by asking Mr. Happy Unit Circle.
Next, some useful observations.
e When working in CC, [ (z,y) = (Z,y)] ifandonlyif [z=% and y=7] .
e If the point P has PC (r,0), then P also has PC (r,0 + 27). In other word, in PC,

(r,0) represents the same point as (r,0 +2m) .

This is because the point P has the unique CC (z,y) where
z = rcosf "= rcos(f + 2m)
y = rsing "Z° rsin(f + 2) .

e If the point P has PC (—r,6), then P also has PC (7,0 4+ 7). In other word, in PC,

(—r,0) represents the same point as (r,0+m) .

This is because the point P has the unique CC (z,y) Wher
x = —rcosf "L 4 cos(f + )
y = —rsing "Z° +rsin(d+ ) .
fono =2 Yo g
A point P € R* with CC (z,y) and PC (r, 0) satisfies the following. X xw

By definition of polar coordinates:

x = r cosf and y = r sinf . (1)
And so by basic trigonometry:

r? = a2 442 and tanf = {

ifx#0

So is given a point P in PC (r,0), we can find it’s (unique) CC (z,y) by using the equation .
While if given a point P in CC (z,y), how to find a PC (r,6)7 ...

There are so many choices. Well, e.g.: we can use

arctan(¥) ifz>0

tan (4 if 0

r= 3/ 22+y2 and 6 = irc an(z) + 1 mf
3 ifx=0and y>0
- ifx=0and y<O0,

which gives 7 > 0 and 5F <6 < 37” Can you think of other choices?

1Recall cos( + ) = — cos and sin(f + 7) = —sinf .
2Recall, = <arctanf < % .
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Polar Coordinates

’ Polar Equations ‘

Consider a polar equation r = f (). You can think of such a polar equation as a describing a parametric
curve given in CC by (use equations in (1)),

x(0) = f(0)cosb
y(0) = f(0)sind .

’Graphing Polar equation r = f (6) ‘

The period of f(6) = cos(k6) and of f(#) = sin(k0) is 2%
To sketch these graphs, divide the period by 4 and make the chart.
We divide the period by 4 when making the chart in order to detect the max/min/zero’s of the function r = f(6).

(2)

Area

Let A(r,0) be the area of a sector of a circle with radius r and cental angle 6 radians.

Comparing A(r, 6) to the area of the whole circle lead us to a proportion, which we can solve for A(r,6):
A(r,0) 0 A(r,0) 0 0 mr? Or?
A(rn2m)  2n w? wm o) =57 = r8) = 3

So, the area of a sector of a circle with radius r and central angle Af is

A(r,A0) = %ﬁ (AD) .

—
Now consider a function r = f(6) which determines a curve in the plane where

4
(1) f: [, 8] — [0,00] .
(2) f is continuous on [a, ] N ed é \n
3) B—a<2r.
Then the area bounded by polar curves r = f(#) and the rays § = « and 0§ = 3 is MQ"'H) ZLl’ l -
1
2

0=5
A = [f(0)]7 db .
0=«

Arc Length

If » = f(0) has a continuous first derivative for a < # < f and if the point P (r,0) traces the curve
r = f (#) exactly once as 6 runs from « to 3, then the arc) length of the curve is

Why is the so? Well, veiwing the curve that r = f () traces out as a parametric curve as given in (2),

we already know that
J— B / 2 / 2
= [z (0)]" + [y (0)]" db .

[/ ()] + [y 0)]° = [Dg (£ (8) cos)]* + [Dg (f (6) sin 6))*

=["r( sin0+f’(0)c059]2+ [+f(t9)cos€+f’(9)cos€]2

[f (0)]*sin®0 — 27 (0) f' (0) cosOsind + [f'(6)]°

[F(0)]?cos®0 + 2 (0) f (0) cosfOsinf + [f’(@)]2sin29
£

And
(
)

cos’ 0

+
= [f(0)] (sm 0 + cos> ) + [ (0)]2 (cos2c9—l—sin2«9)
= [FOF + [f©)
dr?
= [r* + d@}
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