15.4. Double Integrals in Polar Coordinates.

Recall Polar Coordinates (r, θ) from Calk. II.
If needled, see handout posted on Handout page (under 15.4)
Our old trustly friend, Cartesian coordinates, are handy when dealing with boxy objects.
Our new friend, polar coordinates, are handy when dealing with windy/circular objects. let's abbreviate:
Cartesian coordinates by CC and polar coordinates by PC. (x, y) (r, θ)

relations btw. $C C$ and $P C$ $x=r \cos \theta \quad$ and $\quad y=r \sin \theta$

$$
x^{2}+y^{2}=r^{2}
$$

(*) When computing double integrals over a region R, we partition R

Cartesian Coords
Polar Coords
polar rectangle

$$
R=\{(r, \theta) \mid a \leqslant r \leqslant b, \alpha \leqslant \theta \leqslant \beta\}
$$

Polar rectangle

Dividing R into polar subrectangles

The "center" of Rig is

$$
\left(r_{i}^{*}, \theta_{j}^{*}\right)
$$

where

$$
\begin{aligned}
& r_{i}^{*}=\frac{1}{2}\left(r_{i-1}+r_{i}\right) \\
& \theta_{j}^{*}=\frac{1}{2}\left(\theta_{j-1}+\theta_{j}\right)
\end{aligned}
$$

Area of $R_{i j}=\left(\right.$ area of big sector w/ $A=\Delta \theta$ and raduis $=r_{i}$)

- (area of little sector wo $Z=\Delta \theta$ and $r=r_{i-1}$)

$$
\begin{aligned}
& =\frac{1}{2} r_{i}^{2} \Delta \theta-\frac{1}{2} r_{i-1}^{2} \Delta \theta=\frac{1}{2}\left(r_{i}^{2}-r_{i-1}^{2}\right) \Delta \theta \\
& =\frac{1}{2}\left(r_{i}+r_{i-1}\right)\left(r_{i}-r_{i-1}\right) \Delta \theta=r_{i}^{*} \Delta r \Delta \theta=\text { area of Rif }
\end{aligned}
$$

So

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \approx \sum_{j} \sum_{i} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) \text { (area of } R_{i j} \text {) } \\
& \approx \sum_{j} \sum_{i} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r \Delta \theta
\end{aligned}
$$

As usual, take the limit as $\Delta r \rightarrow 0$ and $\Delta \theta \rightarrow 0$ to get

$$
\iint_{R} f(x, y) d A=\int_{\theta=\alpha}^{\theta=\beta} \int_{r=a}^{r=b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Thu change to polar coordinates in a double integral
If $f: R \rightarrow \mathbb{R}^{1}$ is continuous on the polar rectangle

$$
R=\left\{(r, \theta) \& \mathbb{R}^{2}: 0 \leq a \leq r \leq b \text { and } \alpha \leq \theta \leq \beta\right\}
$$

where $\beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\theta=\alpha}^{\theta=\beta} \int_{r=a}^{r=b} f(r \cos \theta, r \sin \theta) \frac{r}{\uparrow} d r d \theta
$$

Recall $\iint_{R} 1 d A=($ total $)$ area of R.

The Let $\beta-\alpha \leq 2 \pi$. Let h_{1} and h_{2} be continuous on $[\alpha, \beta]$.
If f is continuous on a polar region of the form

$$
\begin{gathered}
D=\left\{(r, \theta) \mid \alpha \leqslant \theta \leqslant \beta, h_{1}(\theta) \leqslant r \leqslant h_{2}(\theta)\right\} \\
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{gathered}
$$

then

TL

$$
\begin{aligned}
& \text { Cartesian Cords } \quad \rightarrow \quad \text { Polar Cords } \\
& d A \rightarrow \quad \rightarrow d x d y \quad r d r d \theta
\end{aligned}
$$

Ex 1 Evaluate

$$
\iint_{R}\left(3 x+4 y^{2}\right) d A
$$

Where R is the region in the upper half plane bounded by

$$
x^{2}+y^{2}=1
$$ and $x^{2}+y^{2}=4$.

Soln. Sketch R.

So $R=\left\{(r, \theta) \leq \mathbb{R}^{2}: 1 \leq r \leqslant 2\right.$ and $\left.0 \leqslant \theta \leqslant \pi\right\}$.

$$
\begin{aligned}
& \iint_{R}\left(3 x+4 y^{2}\right) d A=\int_{\theta=0}^{\theta=\pi} \int_{r=1}^{r=2}\left(3 r \cos \theta+4 r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =\int_{\theta=0}^{\theta=\pi}\left[\int_{r=1}^{r=2}\left(3 r^{2} \cos \theta+4 r^{3} \sin ^{2} \theta\right) d r\right] d \theta \\
& =\int_{\theta=0}^{\theta=\pi}\left[\left.\left(r^{3} \cos \theta+r^{4} \sin ^{2} \theta\right)\right|_{r=1} ^{r=2}\right] d \theta \\
& =\int_{\theta=0}^{\theta=\pi}\left[\left(8 \cos \theta+16 \sin ^{2} \theta\right)-\left(\cos \theta+\sin ^{2} \theta\right)\right] d \theta \\
& =\int_{\theta=0}^{\theta=\pi}\left[7 \cos \theta+15 \sin ^{2} \theta\right] d \theta=\int_{\theta=0}^{\theta=\pi}\left[7 \cos \theta+\frac{15}{2}(1-\cos 26)\right] d \theta \\
& \left.=\left[7 \sin \theta+\frac{15}{2} \theta-\frac{15}{2} \cdot \frac{1}{2} \sin (2 \theta)\right) \right\rvert\, \theta=\pi \\
& \theta=0
\end{aligned}
$$

Ex 2 Find the volume V of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$.

Soln

When $z=0$ (i.e. the $x y$-plane), the par aboloid $z=1-x^{2}-y^{2}$ becomes

$$
0=1-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}=1
$$

So D is

$$
D=\left\{(r, \theta) \varepsilon \mathbb{R}^{2}=0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\right\}
$$

so

$$
\begin{aligned}
& V=\iint_{D}\left(1-x^{2}-y^{2}\right) d A \\
& \text { (A) }=\iint_{D}\left(1-\left(x^{2}+y^{2}\right)\right) d A \\
& \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array} \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[\int_{r=0}^{r=1}\left(1-\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)\right)^{y=r \sin \theta} r d r\right] d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[\int_{r=0}^{r=1}\left(1-r^{2}\right) r d r\right] d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[\int_{r=0}^{r=1}\left(r-r^{3}\right) d r\right] d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi}\left[\left.\left(\frac{r^{2}}{2}-\frac{r^{4}}{4}\right) \right\rvert\, \begin{array}{l}
r=1 \\
r=0
\end{array}\right] d \theta=\int_{\theta=0}^{\theta=2 \pi} \frac{1}{4} d \theta \\
& =\frac{1}{4} \theta \left\lvert\, \begin{array}{l}
\theta=2 \pi \\
\theta=0
\end{array}=\frac{2 \pi}{4}=\frac{\pi}{2}\right.
\end{aligned}
$$

Ex 3 Find the area A enclosed by one loop of the four leaved rose

$$
r=\cos (2 \theta)
$$

Soln sketch $r=\cos (2 \theta)$

So

$$
\begin{gathered}
D=\left\{(r, \theta) \in \mathbb{R}^{2}:-\pi / 4 \leq \theta \leq \pi / 4\right. \text { and } \\
0 \leq r \leq \cos (2 \theta)\} .
\end{gathered}
$$

So

$$
\begin{aligned}
& A=\iint_{R} 1 d A \\
& =\int_{\theta=-\pi / 4}^{\theta=\pi / 4}\left[\begin{array}{ll}
r=\cos (2 \theta) & 1 \\
\int_{r=0} & 1
\end{array}\right] d r \\
& =\int_{\theta=-\pi / 4}^{\theta=\pi / 4}\left[\begin{array}{ll}
r^{2} \\
2
\end{array} \left\lvert\, \begin{array}{l}
r=\cos (2 \theta) \\
r=0
\end{array}\right.\right] d \theta \\
& =\frac{1}{2} \int_{\theta=-\pi / 4}^{\theta=\pi / 4} \cos ^{2}(2 \theta) d \theta=\frac{1}{2} \int_{\theta=\pi / 4}^{\theta=\pi / 4} \frac{1}{2}(1+\cos 4 \theta) d \theta \\
& =\frac{1}{4}\left(\theta+\frac{1}{4} \sin 4 \theta\right) \left\lvert\, \begin{array}{l}
\theta=\pi / 4 \\
\theta=-\pi / 4
\end{array} \cong \frac{\pi}{8}\right.
\end{aligned}
$$

