15.1-15.3: Double (Iterated) Integals over Region R in xy-plane

Goal for Double Integrals. Have: $\leftarrow T$ Th: Box-ish
a region R in the $x y$-plane and a function $z=f(x, y)$ with $f: R \rightarrow \mathbb{R}^{1}$

Want to Express:
unsignediactual

1. Total Area of R as: $A=\int S 1 d A$
above R is positive and below R is restive
2. 'Signed' Volume of the 3D object bounded by R and the surface $z=f(x, y)$ as: $V=\iint f(x, y) d A$. TL:" "bottom" 4 亿"toop" of the 3D objet?

How to do when $R=[a, b] \times[c, d]$

1. Divide R into "little pieces', eg. subrectangles
2. From each subrectangle $R_{i j}:=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$. chose a "sample point" (x_{i}^{*}, y_{i}^{*})
3. Over $R_{\text {if }}$, build a "typical element" (which is a retangluar box with base $R_{i j}$ and height $f\left(x_{i}^{*}, y_{i}^{*}\right)$
$>$

Volume of typical element (in. rect. box $)=\left(\right.$ height) (ara base) $=f\left(x_{i}^{*}, y_{j}^{*}\right)(\Delta x \Delta y)$
4. Add together all volumes of topical elements to get:

Signed Volume $\approx \sum_{j} \sum_{i} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x \Delta y$
5. Then take the limit as. $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$ to get Signed Volume $=\int_{y=0}^{y=d} \int_{x=a}^{\pi=b} f(x, y) d x d y$

Pictures for $R=[0,2] \times[0,2]$ and $z=16-x^{2}-y^{2}$

FIGURE 7

FIGURE 8
The Riemann sum approximations to the volume under $z=16-x^{2}-2 y^{2}$ and above

Source: Calculus by Stewart.

Thu. Fubini- Tonelli for $R=$ rectangle $[$ circa 1908]
Let $z=f(x, y)$ with $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous
where $R=[a, b] \times[c, d] \stackrel{\text { ie. }}{=}\left\{(x, y) \in \mathbb{R}^{2} ; a \leq x \leq b\right.$ and $\left.c \leq y \leq d\right\}$.
Then
SS $f(x, y) d A=$ "signed volume of 3D object bounded by R and $z=f(x, y)^{\prime}$

$$
\begin{aligned}
& =\int_{y=c}^{y=d}\left[\int_{x=a}^{x=b} f(x, y) d x\right] d y=\int_{x=a}^{x=b}\left[\int_{y=c}^{y=d} f(x, y) d y\right] d x \\
& =\int_{y=c}^{y=d} \int_{x=a}^{x=b} f(x, y) d x d y=\int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x, y) d y d x
\end{aligned}
$$

Remark Fubini says we can "reverse the order of integration" lie. Can first S wot x then S wot in or can first S wit y then S writ x)
Sometimes one ordering is much easier to integrate than the other order.
Ex 1. Evaluate $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$ better $\int_{x=0}^{x=3}\left[\int_{y=1}^{y=2} x^{2} y d y d x\right.$
Soln $\int_{y=1}^{y=2} x^{2} y d y=\left.\left(x^{2}\right)\left(\frac{y^{2}}{2}\right)\right|_{y=1} ^{y=2}=x^{2}\left[\frac{2^{2}}{2}-\frac{1^{2}}{2}\right]=\frac{3}{2} x^{2}$.

$$
\int_{x=0}^{x=3}\left[\int_{y=1}^{y=2} x^{2} y d y\right] d x=\int_{x=0}^{x=3} \frac{3}{2} x^{2} d x=\left.\frac{3}{2} \frac{x^{3}}{3}\right|_{x=0} ^{x=3}
$$

$$
G=\left.\frac{1}{2} x^{3}\right|_{x=0} ^{x=3}=\frac{1}{2}\left[3^{3}-0^{3}\right]=\frac{27}{2}
$$

Thy. Fubini- Tonelli (stronger form)
Let $z=f(x, y)$ with $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous.

1. If $R=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b\right.$ and $\left.g_{1}(x) \leq y \leq g_{2}(x)\right\}$

with $y=g_{1}(x)$ and $y=g_{2}(x)$ continuous on $[a, b]$
then
SS $f(x, y) d A=$ "signal volume of 3D object bounded by R and $z=f(x, y)$ "
R

$$
=\int_{x=a}^{x=b}\left[\int_{y=g_{1}(x)}^{y=g_{2}(x)} t(x, y) d y\right] d x
$$

2. If $R=\left\{(x, y) \in \mathbb{R}^{2}: c \leq y \leq d\right.$ and $\left.h_{1}(y) \leq x \leq h_{2}(y)\right\}$ continuous on $[c, d]$
then

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\text { "signed volume of 3D ob } j k c t \text { bounded by } R \text { and } z=f(x, y)^{\prime \prime} \\
& =\int_{y=c}^{y=d}\left[\int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x, y) d x\right] d y
\end{aligned}
$$

(*) Do "build a porch deck" explantion."
Important Case In Fubini The, if $f(x, y)=1$ for all $(x, y) \in R$, then $\iint_{R} 1 d A=$ total (unsigned/astual) area of R.
Why? $\iint 1 d A=$ signed volume of the box wo height 1 and base R $=($ height $)$ (buss) $=1$ (arza of $R)$.

Ex 2 . Let R be the region (in $x y$-plane) bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.
Express the (total) area A of R using double integrals in two different ways.
S.ln. Find points of intersection of $y=x-1$ and $y^{2}=2 x+6$. will get $(-1,-2)$ and $(5,4)$, - Sketch R.

$$
\text { Way } 1-\frac{d y d x}{L_{1 \leq 1}} \text { IA } y \text { vary } \quad \text { way } 2-\frac{d x}{L_{1} s t} \text { |e }
$$

$$
\text { way 1. } A=\int_{x=-3}^{x=-1}\left[\int_{y=-\sqrt{2 x+6}}^{y=\sqrt{2 x+6}} 1 d y d x+\int_{x=-1}^{x=5}\left[\int_{y=x-1}^{y=\sqrt{2 x+6}} 1 d y\right] d x\right.
$$

Way 2. $A=\int_{y=-2}^{y=4}\left[\int_{x=\frac{y^{2}}{2}-3}^{x=y+1} 1 d x\right] d y$
Ex 3. Let R be as in Ex 2. Express $\iint_{R} x y d A$ as one double integral.
Soln. To get ONE double integral, from Ex. 2, must use Way 2.

$$
\iint_{R} x y d A=\int_{y=-2}^{y=4}\left[\int_{x=\frac{y^{2}}{2}-3}^{x=y+1} x y d x\right] d y
$$

Ex 4 From $E_{x} 3$, evaluate $\int_{R} \int_{x y} d A$.
Soln.

$$
\begin{aligned}
& \iint_{R} x y d A=\int_{y=-2}^{y=4}\left[\int_{x=\frac{y^{2}}{2}-3}^{x=y+1} x y d x\right] d y \\
& =\int_{y=-2}^{y=4}\left\{\begin{array}{l}
x=y+1 \\
\frac{x^{2}}{2} y
\end{array}\right] d y \\
& =\frac{1}{2} \int_{y=-2}^{y=4}\left\{x^{2} y \quad \begin{array}{l}
x=y+1 \\
x=\frac{y^{2}}{2}-3
\end{array}\right] d y \\
& =\frac{1}{2} \int_{y=-2}^{y=4}[\underbrace{\left.(y+1)^{2} y-\left(\frac{y^{2}}{2}-3\right)^{2} y\right)}_{\text {Valgebra }}] d y \\
& =\frac{1}{2} \int_{y=-2}^{y=4}\left[-\frac{y^{5}}{4}+4 y^{3}+2 y^{2}-8 y\right] d y \\
& \left.=\frac{1}{2}\left[-\frac{y^{6}}{24}+y^{4}+\frac{2 y^{3}}{3}-4 y^{2}\right] \right\rvert\, \begin{array}{l}
y=4 \\
y=-2
\end{array}
\end{aligned}
$$

\downarrow arithmztic

$$
=36
$$

Remark $\int \sin \left(t^{2}\right) d t$ is not an "elementary function"
In shat, need more than calculus to evaluate $\int \sin ^{\prime} t^{2} d t$
Ex 5 Evaluate $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$.
Soln

TL: we can not evaluate [this part] so lot's try switching order of integration

$$
=\int_{y=0}^{y=1}\left[\int_{x=0}^{x=y} \sin \left(y^{2}\right) \cdot d x\right] d y
$$

$$
=\int_{y=0}^{y=1}\left[x \sin \left(y^{2}\right) \left\lvert\, \begin{array}{l}
x=y \\
x=0
\end{array}\right.\right] d y
$$

$$
=\int_{y=0}^{y=1}\left[y \sin \left(y^{2}\right)-0 \sin (y)^{2}\right] d y
$$

$$
\begin{aligned}
& =\int_{0}^{1} y \sin \left(y^{2}\right) d y=-\left.\frac{1}{2} \cos \left(y^{2}\right)\right|_{y=0} ^{y=1} \\
& =-\frac{1}{2}(\cos 1-\underbrace{\cos 0}_{1})=\frac{1}{2}(1-\cos 1)
\end{aligned}
$$

