\$ 14.7 Extreme Values (Max/Min) and Saddle Points 14.7.)
This Section Setup. $f: D^2 \rightarrow R$ with $(a,b) \in D^2 \subseteq R^2$
(a, b, f(a, b)) abbreviations
x P (a) y max for maximum x P (a) y min tor minimum. ext. for extremum
$\frac{\operatorname{Recall}}{\operatorname{P}} \stackrel{=}{\exists} f(x, y) = \langle f_{x}(x, y), f_{y}(x, y) \rangle. \text{ In short}: \stackrel{=}{\exists} f = \langle f_{x}, f_{y} \rangle.$
Def The point (a, b) ETR ² is a critical point of f provided: 1. (a,b) is in the interior of the domain D ² of f
2. Either $\overline{\nabla f}(a,b) = \langle G, O \rangle$ Defs Or $\overline{7} f(a,b) DNE$,
1. $f(a, b)$ is a local max. of $f \land f(a, b) \ge f(x, y)$ for each $(\pi, y) \ge D^2 \cap N(a, b)$
2. $f(a, b)$ is a local min, of f if $f(a, b) \leq f(x, y)$ for each $(x, y) \in D^2 \cap N(a, b)$ and for some $e \geq 0$
3. $f(a,b)$ is an absolute max. of f if $f(a,b) \ge f(\pi, y)$ for each $(\pi y) \in D$. 4. $f(a,b)$ is an absolute min of f if $f(a,b) \le f(\pi, y)$ for each $(\pi y) \in D$.
5. (a,b) is a saddle point of a differentiable fat a critical pt. (a,b)
if every Ng (u,b) contains a pt (7,4) in Somain of f with f(x,y) > f(a,b) and also contains a pt (x,y) in Somain of f w) f(x,y) < f(a,b).
<u>Rmk</u> 1. local is often reslaced with relative. 2. An extreme point (or extremen) is a max, or min point.
Then \$\overline f(a,b) = <0,0>.

Recall Setup.
$$f: D^2 \rightarrow IR$$
 with $(a,b) \in D^2 \in IR^2$ N.7.2
Def If the 2^{md} order partial derivatives of f exist at (a, b)
and the mixed partial derivatives of f exist at (a, b)
and the mixed partial care continues in a neighborhood of (a,b) them
• Hessian matrix of f at (a,b) is $H(a,b) = \begin{bmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{bmatrix}$
• D $(a, b) = det(H(a,b)) = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}(a,b) f_{yy}(a,b) \end{bmatrix}$
In short $H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$ and $D = f_{xx} & f_{yy} = (f_{xy})^2 \end{bmatrix}$
Min/Max Tests Summary
Herein values of f can occur only at a :
1. boundary point of domain of f
2. critical point (i.e. an interior pt uture ∇f is ∂ or DNE)
 2^{nd} Der. Test . If (a,b) is a critical point and the 2nd order
partial der. are continuous in a incidention of 4(a,b), then
1. D>0 and $f_{xx} < 0$ at $(a,b) \Rightarrow (a,b)$ is local max.
2. D>0 and $f_{xx} < 0$ at $(a,b) \Rightarrow (a,b)$ is local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is local max.
3. D<0 at $(a,b) \Rightarrow (a,b) \Rightarrow (a,b)$ is local max.
3. D<0 at $(a,b) \Rightarrow (a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the local max.
3. D<0 at $(a,b) \Rightarrow (a,b)$ is near the lo

CP = Critical Point 14.7.3 Ex1. Find absolute extrema for $f(x,y) = 2 + x^2 + y^2$. If not given a domain D^2 of $f(so f: D^2 \rightarrow IR)$, BTW : then take the largest domain for which f is defined. So here, the domain $D^2 = \mathbb{R}^2$. Review: interior of $\mathbb{R}^2 =$. The boundary of $D^2 =$ _____. Soln TL: find critical Points (CP), i.e. pts in Interior of domain w/ $\overline{7}f=.\overline{6}$ or $\overline{7}f$ PNE. • $\overline{F}_{\chi} = 2\chi$ $f_{\chi} = 2\chi$ $\overline{7}f = (2\chi, 2\chi)$ $\overline{\nabla} f = \langle 0, 0 \rangle \iff [2x=0 \text{ and } 2y=0] \iff [x=0=y].$ · Note $\overline{\forall} f$ exists for all $(x,y) \in \mathbb{R}^2 = domain of f$. • Critical points: only (0,0) [Stor. Extreme value (5) can boundary points of domain = ϕ (Test) cocur only at (0,0). • Use 2nd Der. Test WT CP=(0,0). $f_{x_{x}}(x,y) = 2$, $f_{yy}(x,y) = 2$, $f_{xy}(x,y) = 0$ $\stackrel{note}{=} f_{yx}(x,y) = 0$ • $D \Big|_{(0,0)} = \Big|_{f_{XX}} f_{XY} \Big|_{(x,y)=(0,0)} = \Big|_{2} 0 \Big|_{= (2)(2)-(0)(0)} = 4 > 0$ $|_{(x,y)=(0,0)} = \Big|_{0} 2 \Big|_{(x,y)=(0,0)}$ fyx (0,0) = 2 >0 ø So by 2nd Der. V Test => (0,0) local min 0 But extreme values only possible at (0,0) thus (0,0) is where the absolute min. occurs. And $f(0,0) = 2 + 0^2 + \delta^2 = 2$. TL: Let's reread the question to remind us precisely what we are lasing for. The absolute min. value is 2. There is not an absolute max. value. BTW: WE say " the abs. min. value occurs at (90).

				14,7,4
Next a continuation	n of $Ex 1$.		TTL	
Next a continuation Ex2. Find the model on the set Soln	ax and min	ralues	of 22, 42	41
	f(x, y) =	$7 + x^2 + y^2$	1 ² Z ²	,
on the set		2 1 1 9	2	
S	$= \sum (x,y) \ge \pi$	$\gamma^{2} \cdot \chi^{2}$	+ 4 4 14	
Soln		- ·	4 7	
· Consider f.S.	-> 12 . i.·	c S = d	omain of f.	
<u>soln</u> Consider f:S	y,			
	2	TL. S	is the	
Sketch S	· · ·			4
64			nink interior of S	
		~`h	lue boundary of S	. 41
-	2			
sketch S	Ý	r(t) = < <	$\cos t$, $2\sin t$, $0 \le$	オ < 2町。
· From Ex1, the only				
· Thus the only	CP ff.S	$\rightarrow \Pi$ in ((0.n)	
• 1 st Der. Test ⇒	Extrema can a	accur only at	(0,0) or on boundar	ry of S.
· Parameterize the bo	undary x2 + 42	by : x(t) = 1	cost, y(t)=2sint	$0 \leq t < 2\pi$
· So want to Ma>	IM: the func	tion 7-f (x	(t), $y(t)$) of 1	Nar ichle -
Consider g(t) :=	F(a(t) ul	t)) _ 551	NE. 28/dt = 0 to	r o < t < 2T
La CR DE La		(2~) (- <in< th=""><th>+) + (2u)(2cost)</th><th>)</th></in<>	+) + (2u)(2cost))
$\frac{1}{1+}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	+ <u>····</u>	_ (2) (- 1)	$(+) + (2y)(2\cos t)$	
= (2 cont)	$(-\sin t) + 2$	Zsint 1/2cos	$t) = -2\cos t \sin t +$	-8 sint cot
$a \sin t$	$c_{n} t = 0$	(= 0, ½, Π, ^{3Π/}	2 -
A Make al ort				
. Make a chart	cost 2sint	2+x2+y2		
t	(χ, ψ)	f(x, u)	conclusion	1
critical pt.	(0,0)			
	(0,0)	2	abs. Min	
boundary pts. 0	(1,0)	3		
$\overline{1}_{2}$	(0,2)		loc, min	
π		63	abs. ma;	*
1.				
311/2	(0,1) (0,-2)	6	loc. min abs. ma	V

14.7.5 Ex3 Find all local extrema values and sable points of $f(x,y) = \chi^{4} + y^{4} - 4xy + 1$. Soln • The domain would be (the largest possible...so) \mathbb{R}^2 . • So $f: \mathbb{R}^2 \to \mathbb{R}$. The interior of $\mathbb{R}^2 = \mathbb{R}^2$. The badry of $\mathbb{R}^2 = \emptyset$. · To find CP (critical points) : $f_{\chi}(x,y) = 4x^{3} - 4y, \quad f_{y}(x,y) = 4y^{3} - 4x, \quad \overline{\forall}f(x,y) = 24x^{3} - 4y, \quad 4y^{3} - 4x)$ $\vec{\nabla}f(x,y) = \vec{O} \iff \begin{bmatrix} 4x^3 - 4y = 0\\ 4y^3 - 4x = 0 \end{bmatrix}$ $0 = \chi^{q} - \chi = \chi (\chi^{g} - 1) = \chi (\chi^{4} + 1) (\chi^{4} - 1)$ => x = 0 or x4 +1 = 0 or x4 -1 = 0 $\chi^{4} = -1$ $\chi^{2} = 1$ $\chi^{2} = 1 = 2\chi^{2} = 1 \Rightarrow \chi = \pm/$ Since y=x3, the CP are: (0,0), (1,1), (-1,-1). • Use 2^{nd} Der. Test on the CP. $f_{xx}(x,y) = 12x^2$, $f_{yy} = 12y^2$, $f_{xy} = -4$. $D(x,y) = \begin{cases} f_{xx} + f_{xy} \\ f_{y\pi} + f_{yy} \\ f_{y\pi} + f_{yy} \end{cases} = \begin{cases} 12 x^2 - 4 \\ -4 & 12y^2 \\ (x,y) \end{cases} = 144x^2y^2 - (-4)(-4) \\ \pm 144x^2y^2 - 16.$ D (0,0) = -16 < 0 so (0,0) is a saddle pt. Btw f(0,0) -1 D(1,1) = 144 - 16 > 0 and $f_{2x}(1,1) = 12(1)^2 > 0 \Rightarrow (1,1)$ is a loc. min and f(1,1) = |+1 - 4 + 1 = -1.

 $D(-1,-1) = 144 - 16 > 0 \text{ and } f_{X_{T}}(-1,-1) = 12(-()^2 > 0 \implies (1,1) \text{ is a loc. min}$ and f(-1,-1) = (+1-4(-1)-1) + 1 = -1

IL: reread Question to recall precisely what is being asked.

• There is one saddle pt. (0,0). There is one local min. value of -1. (p.s. occurs at (1,1) and (-1,-1) There is no local max. value,

14.7.6 A redangular box, without a lid, is to hold 256 cm3 of sand. Ex 4 Find the dimension of the box that minimizes the surface area of the box (4 sides and bottom, no top). Soln Surface Area = 2xz + 2yz + xy sides sides bottom $Volume = xyz = 256 = 2 = \frac{256}{xy}$ Surface Area = $2x\left(\frac{256}{7g}\right) + 2y\left(\frac{256}{xy}\right) + xy$ Want to min f(1, y) = 512 y -1 + 512 x -1 + 74. Note 2>0 and y>0. . Find C.P. $f_{x}(x,y) = -512 x^{-2} + y$, $f_{y}(x,y) = -5/2 y^{-2} + x$. $f_{\chi}(x,y) = -5/2 \chi + y = 0$ $= \frac{5}{2} + y = 0$ $= \frac{5}{2} + y = 0$ $= \frac{5}{2} + x = 0$ case x=0 cannot physically happen (there would be no box)-· 2rd Der. Text for CP (8,8) $f_{xx} = 2(5|2)x^{3}, f_{yy} = 2(5|2)y^{-3}, f_{\pi y} = 1$ $f_{xx}(8,8) = 2, f_{yy}(8,8) = 2, f_{\pi y}(8,8) = 1$ $D(8,8) = \begin{vmatrix} 2 \\ 1 \\ 2 \end{vmatrix} = (2)(2) - (1)(1) > 0 \text{ and } f_{\chi_{\chi}}(8,8) = \frac{2(512)}{8^3} > 0$ =) a min. occurs at (8,8), TL: Reread the guestion to recall what precisely was asked, At 18:8), 2 = 256 = 4.82 78 8.8 = 4. · For the box bottom, each side should be 8 cm. The box height should be 4 cm.

Recall
d (pt Q, a plane P thru pt P and up normal
$$\vec{n}$$
) = $(\vec{R} + \vec{n})$
To apply above formula, need a pt. Pon plane Q
What it we cannot find a pt P on plane Q?
Ex5 Find a function of 2 variable which can to minimized to .
provide us with the shortest distance from the
point Q = (1,0,-2) to the plane P: $x + 2y + 2 = 4$
y.
S.In. $\cdot \text{If}(x,y,z)$ is an the plane Q then $z = 4 - x - 2y$
· $d(Q, a point (x_1y,z)$ on the plane Q)
= $d((1,0,-2), (x,4,4-x-2y))$
= $d((1,0,-2), (x,4,4-x-2y))$
= $\int (x-1)^2 + y^2 + [(4-x-2y)^2 - 2]^2^7$
= $\int (x-1)^2 + y^2 + ((6-x-2y)^2)$.
· So could min.
 $d(x,y) = \int (x-1)^2 + y^2 + ((6-x-2y)^2)$.
To make calculation easier, min.
 $f(x,y) = (x-1)^2 + y^2 + ((6-x-2y)^2)$.
Will get min. of $z = f(x,y)$ occurs at $(\frac{11}{6}, \frac{5}{2})$.
So min. distance will be $\sqrt{f(\frac{11}{6}, \frac{5}{2})}$.
RmK To min. distance by a point R and a

7

surface S (which is not a plane), then can also use method in Ex5.