14.6 Tangent plane

Defs Given:

- a level surface \mathcal{F}, i.e. $f(x, y, z)=C$
that contains
- the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
and f is differentiable at P_{0}
and

$$
\cdot \vec{\nabla} f\left(P_{0}\right) \neq 0
$$

1. The tangent plane to the surface \mathcal{F} at point P_{0} is the plane thru P_{0} that is normal to $\left.\vec{\nabla} f\right|_{P_{0}}$.
2. The normal line to the surface \mathcal{S} at point P_{0} is the line thru P_{0} that is parallel to $\left.\vec{\nabla} f\right|_{P_{0}}$.

Picture of a tangent plane and normal line to a surface δ at P_{0}.

thru point P_{0} in direction of $\left.\vec{\nabla} f\right|_{P_{0}}$

Tangent plane \leftarrow thru point P_{0} with normal vector $\left.\vec{\nabla} f\right|_{P_{0}}$

Source: Thomas, $15^{\text {th }} \mathrm{ed}, p 851$

Plane P
thru $P_{0}=\left(x_{v}, y_{0}, z_{0}\right)$ with normal $\vec{n}=\langle a, b, c\rangle$

Line \mathcal{L}
thru $P_{b}=\left(x_{0}, y_{0}, z_{0}\right)$ in direction of $\vec{v}=\langle a, b, c\rangle$
where $P=(x, y, z)$ is an arbitrary point on

$$
\begin{gathered}
\vec{n} \cdot \overrightarrow{P P}_{0}=0 \\
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{gathered}
$$

$$
P \varepsilon \mathscr{L}
$$

$$
\begin{aligned}
& x(t)=x_{0}+a \text { direction af } \\
& y(t)=y_{0}+b t \\
& z(t)=z_{0}+c t
\end{aligned}
$$

So with $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$

- Normal Line \mathcal{L} to $f(x, y, z)=c$ at P_{0} is, for $-\infty<t<\infty$: TL: $\quad \mathcal{L} \| \vec{\nabla} f\left(P_{0}\right) \Rightarrow \mathcal{L}$ is in direction of $\nabla f\left(P_{0}\right)$ so

$$
\begin{aligned}
& x(t)=x_{0}+\left(f_{x}\left(P_{0}\right)\right) t \\
& y(t)=y_{0}+\left(f_{y}\left(P_{0}\right)\right) t \\
& z(t)=z_{0}+\left(f_{z}\left(P_{0}\right)\right) t
\end{aligned}
$$

- Tangent Plane P to $f(x, y, z)=C$ at P_{0} is:

TL:

$$
\frac{P \perp \vec{\nabla} f\left(P_{0}\right) \Rightarrow\left(\vec{\nabla} f\left(P_{0}\right)\right) \cdot \overrightarrow{P P}=0}{\left.f_{x}\right|_{P_{0}}\left(x-x_{0}\right)+\left.f_{y}\right|_{P_{0}}\left(y-y_{0}\right)+\left.f_{z}\right|_{P_{0}}\left(z-z_{0}\right)=0}
$$

- Tangent Plane P to $z=f(x, y)$ at $\left(x_{0}, y_{0}, \widetilde{f\left(x_{0}, y_{0}\right)}\right)$ is: TL: $z=f(x, y) \Leftrightarrow f(x, y)-z,=0$. And $\vec{v}(f(x, y)-z)=\left\langle f_{x}, f_{y},-1\right\rangle$. so use above Tangent Plane to $\lg (x, y, z)=0$ to get

$$
\left.f_{x}\right|_{\left(x_{0}, y_{0}\right)}\left(x-x_{0}\right)+\left.f_{y}\right|_{\left(x_{0}, y_{0}\right)}\left(x-y_{0}\right)-1\left(z-z_{0}\right)=0
$$

Ex. Consider the ellipsoid (a surface S)

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3
$$

and the point $P_{0}=(-2,1,-3)$ on the ellipsoid.
1.1 Find the equation of the tangent plane P at P_{0} to the ellipsoid.
1.2 Find the equation of the normal line \mathcal{L} at P_{0} to the ellipsoid.

Soln. The ellipsoid is a level surface (ot value 3) to

$$
\begin{aligned}
& \quad f(x, y, z)=\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9} \\
& \vec{\nabla} f(x, y, z)=\left\langle\frac{x}{2}, 2 y, \frac{2}{4} z\right\rangle \\
& \vec{\nabla} f(-2,1,-3)=\langle-1,2,-2 / 3\rangle . \leqslant \text { Key. }\left.\vec{\nabla} f\right|_{p_{0}}
\end{aligned}
$$

1.1. For tangent plane P, use $\left.\vec{\nabla} f\right|_{p_{0}} \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$.

$$
p:-(x+2)+2(y-1)-2 / 3(z+3)=0
$$

1.2 For normal line \mathcal{L}, use $P_{0} \& \mathcal{L}$ and \mathcal{L} in direction of $\left.\vec{\nabla} f\right|_{P_{0}}$

$$
\begin{aligned}
& x(t)=-2+-1 t \\
& y(t)=1+2 t, \quad-\infty<t<\infty \\
& z(t)=-3+-\frac{2}{3} t
\end{aligned}
$$

Ex 2. Intersect surfaces $\mathcal{S}_{1}: f(x, y, z)=k_{1}$ and $\zeta_{2}: g(x, y, z)=k_{2}$. Get a curve ζ. Fix a point P_{0} on ξ.
Consider the tangent line \mathcal{L} at \mathcal{B}^{0} to ξ. Then $\mathcal{L} I l$
Sol. Recallclass Ex (with pipecleaners) of intersecting 2 planes (they are surfaces),

$$
\begin{aligned}
& \text { to get a line (which is a curve). } \\
& \left\{\begin{array}{l}
\text { know } \\
\mathcal{Z} \perp \vec{\nabla} f\left(P_{0}\right) \\
\mathcal{L} \perp \vec{\nabla} g\left(P_{0}\right)
\end{array} \Rightarrow \overrightarrow{\vec{\nabla}_{g}\left(P_{0}\right)} \xrightarrow{\substack{\mathcal{L}} \vec{\nabla} f\left(P_{0}\right)} \Rightarrow \overrightarrow{\mathcal{L} \|\left(\left.\left.\vec{\nabla} H\right|_{P_{0}} x \vec{\nabla} g\right|_{P_{0}}\right)}\right.
\end{aligned}
$$

