14.6 Tangent plane

14.6 Tangent plane
14.6 Tangent plane
14.6.1
Dels Given:
• a level surface
$$S$$
, i.e. $f(X, y, z) = C$
that contains
• the point $P_0 = (X_0, y_0, z_0)$ and fix differentiable of P_0
and
• $\forall f(P_0) \neq 0$.
1. The tangent plane to the surface S at point P_0
is the plane thru P_0 that is normal to $\forall f|_{P_0}$.
2. The normal line to the surface S at point P_0
is the line thru P_0 that is parallel to $\forall f|_{P_0}$.
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane and normal line to a surface S at P_0 .
Picture of a tangent plane \Leftrightarrow there point P_0
the direction of $\forall f|_{P_0}$
Tangent plane \Leftrightarrow there point P_0
tangent plane \blacklozenge there point P_0
tangent plane \blacklozenge then normal vector $\forall f|_{P_0}$
Source : Thomas , 15th ed , p 851.

Ex1. Consider the ellipsoid (a surface 5) 14,6,3 $\frac{\chi^2}{4} + \frac{\chi^2}{9} + \frac{\chi^2}{9} = 3$ and the point $P_p = (-2, 1, -3)$ on the ellipsoid. 1.1 Find the quation of the tangent plane & at Po to the ellipsoid. 1.2 Find the equation of the normal line 2 at Po to the ellipsoid. Soln. The ellipsoid is a level surface (of value 3) to $f(x, y, z) = \frac{\chi^2}{4} + y^2 + \frac{z^2}{9}$ $\overline{\nabla} f(x,y,z) = \langle \frac{\pi}{2}, 2y, \frac{\pi}{6} z \rangle$ $\overline{\nabla} f(-2,1,-3) = \langle -1, 2, -\frac{2}{3} \rangle \cdot \langle -key, \overline{\nabla} f|_{P_0} : is \perp P \text{ and } || J.$ 1.1. For tungent plane P, use $\nabla f|_{P_0} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$. $P: -(x+2) + 2(y-1) - \frac{2}{3}(z+3) = 0$ 1.2 For normal line L, use PoEL and Lindirection of Ifle $z(t) = -3 + -\frac{2}{3}t$ Ex2. Intersect surfaces $S_1 : f(x,y,z) = k$, and $S_2 : g(x,y,z) = k_2$. Get a curve & Fix a point Po on G. Consider the tangent line L at & to E. Then 211 So in Recall class EX (with pipecleaners) of intersecting 2 planes (those are surfaces) to get a line (which is a curve). $\begin{array}{c} & \mathsf{K}_{\mathsf{now}} \\ & \mathsf{L} \quad \bot \quad \nabla \neq (\mathsf{P}_{o}) \\ & \mathsf{L} \quad \bot \quad \nabla \neq (\mathsf{P}_{o}) \\ & \mathsf{L} \quad \bot \quad \nabla \neq (\mathsf{P}_{o}) \end{array} \xrightarrow{} \nabla \neq (\mathsf{P}_{o}) \xrightarrow{} \nabla \to (\mathsf{$