14.5 Directional Derivative and Gradient Vedor
14.5. Directional Derivative and Gradient Vedor
14.5. In This In This 2017 \$ 14.3
Def. A trace curve (for short, trace) in R³ is a
curve in R³ o bauned by intersecting.
a surface in R³ (29, the graph of
$$z = f(x,y)$$
) with
a plane in R³
Directional Derivative
For come So.
• Let $f: D^2 \rightarrow R^2$ with $(x_0, y_0) := P_0 \ge D^2 \le R^2$ and $N_{\le}(rx, y_0) \ge D^2$
• Recall Partial Derivatives
• $\frac{3t}{2x}(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0, y_0) - f(x_0, y_0)}{h}$
• $\frac{3t}{2x}(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0, y_0, h) - f(x_0, y_0)}{h}$
• $\frac{3t}{2y}(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0, y_0, h) - f(x_0, y_0)}{h}$
• $\frac{3t}{2y}(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0, y_0, h) - f(x_0, y_0)}{h}$
• $\frac{3t}{2y}(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0, y_0, h) - f(x_0, y_0)}{h}$
• Now take any unit vector $\vec{u} = \langle u_x, u_y \rangle$
• $\frac{y_0}{u_0}$
Def. The directional derivative of f at (x_0, y_0) in the direction of \vec{u}
• $D_{\vec{u}} f(x_0, y_0) := \lim_{h \ge 0} \frac{f(x_0 + hu_x, y_0 + hu_y) - f(x_0, y_0)}{h}$
• $\frac{f(x_0 + hu_x, y_0 + hu_y) - f(x_0, y_0)}{h}$
• $\frac{f(x_0 + hu_x, y_0 + hu_y) - f(x_0, y_0)}{h}$

The slope of the trace curve C at P_0 is $\lim_{Q \to P}$ slope (PQ); this is

the directional derivative $(D_{\mathbf{u}}f)_{P_0}$.

. How to compute Diff? Use gradient (next. page)

Def If
$$f: D^2 \to \mathbb{R}$$
 with $P = (\pi, \psi) \in D^2 = \mathbb{R}^2$, then $\mathbb{H} \in 3$
• the gradient vector (for short, gradient) of f is
 $\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle$ is $\left[\frac{back}{hull} / \frac{hull}{hull} + \frac{back}{hull} +$

Recall Example from \$ 14.3 (and Desmos) [4,5,4]

$$E_{x} 1$$
. Let $f(x,y) = \sqrt{9 - x^{2} - y^{2}}$ coloring $(9 - x^{2} - y^{2})^{1/2}$
1.1. $\frac{2f}{2x}(x,y) = \frac{-x}{19 - x^{2} - y^{2}}$
1.2. $f_{y}(x,y) = \frac{-x}{19 - x^{2} - y^{2}}$
1.3. $f_{y}(1,2) = -1$
Let ontinue with this comple
1.4. $f_{x}(1,2) = -1$
1.5. $\nabla f(x,y) = \langle f_{x}, f_{y} \rangle = \langle -\frac{x}{19 - x^{2} - y^{2}}, \frac{-\frac{y}{19 - x^{2} - y^{2}}}{\sqrt{19 - x^{2} - y^{2}}}$
1.4. $f_{x}(1,2) = -1$
Let ontinue with this comple
1.5. $\nabla f(x,y) = \langle f_{x}, f_{y} \rangle = \langle -\frac{x}{19 - x^{2} - y^{2}}, \frac{-\frac{y}{19 - x^{2} - y^{2}}}{\sqrt{19 - x^{2} - y^{2}}}$
1.6. $\nabla f(x,y) = \langle f_{x}(1,2), f_{y}(1,2) \rangle = \langle -\frac{1}{2}, -1 \rangle$
1.7. Find the (directional) derivative of f_{x} at the point $(1,2)$
Solution $f(x) = \langle 3, 4 \rangle$.
Want $\Rightarrow (D_{\frac{x}{2}}, f_{y}) = \int (1/2) \langle 1/2 \rangle + (1/2) \langle 1/3 + 4 \rangle = \frac{1}{5} ((-\frac{1}{2})(3) + (1)(4)) = \frac{1}{5} (-\frac{1}{2})$
 $= (-\frac{1}{10})$

Explore Have
$$fix$$
 a function $z = f(x,y)$ and a point P. 14.5.5
Think a letting vary the : unit direction \vec{u}
Oct
 $D_{\vec{n}}f|_{p} = \vec{\nabla}f|_{p} \cdot \vec{u} = 1|\vec{\nabla}f|_{p}||\cos(4\hat{\Delta}f|_{p} \text{ and }\vec{u})$
 $[.4\hat{\Delta}f|_{p} \text{ and }\vec{u})$ varies from $0 \stackrel{+}{\rightarrow} 3 \stackrel{T}{=} \rightarrow TT$
so $\cos(4\hat{\Delta}f|_{p} \text{ and }\vec{u})$ varies from $1 \stackrel{+}{\rightarrow} 9 \rightarrow -1$
so $D_{\vec{u}}f|_{p}$ varies from $1 \stackrel{+}{\rightarrow} 9 \rightarrow -1$
so $D_{\vec{u}}f|_{p}$ varies from $1\hat{\tau}g \rightarrow -1$
so $D_{\vec{u}}f|_{p}$ varies from $1\hat{\tau}g \rightarrow -1|\vec{\nabla}f|_{p}||_{p}$
so $D_{\vec{u}}f|_{p}$ varies from $\eta \vec{\nabla}f|_{p}|_{p} \rightarrow 0 \rightarrow -1|\vec{\nabla}f|_{p}||_{p}$
so as the direction \vec{u} varies gdf : max min
Recall $D_{\vec{u}}f(\vec{x}_{0}, y_{0})$ is the rate of change of f at (x_{0}, y_{0}) in the direction of \vec{u} .
Thus at a point P
· f increases most rapidly in the direction of $\nabla f|_{p}$, vg role of change = $||\vec{\nabla}f|_{p}||$.
· f decreases most rapidly in the direction of $-\nabla f|_{p}vg$ role of change = $||\vec{\nabla}f|_{p}||$
and if $\vec{\nabla}f|_{p} \neq \vec{O}$.

Revisit
$$E \times 1$$
. $f(x,y) = \overline{1 + x^2 - y^2}$ and $P = (1,2)$. [4.5.6
(HAD
1.5 $\overline{\nabla} f(x,y) = \langle f_x, f_y \rangle = \langle \frac{-x}{1 + x^2 - y^2}, \frac{-y}{1 + x^2 - y^2} \rangle$
1.6 $\overline{\nabla} f(1,2) = \langle f_x(1,2), f_y(1,2) \rangle = \langle -\frac{1}{2}, -1 \rangle$
New:
1.8 At the point $P = (1,2)$, $2 = f(x,y)$ is increasing meet
rapidly in the direction of $\left[-\frac{1}{5}, \frac{-2}{5} \right]$ $\left[\frac{\log t - 1}{5} - \frac{1}{5} \right]$
 $\overline{r} = \langle -\frac{1}{5}, 1 \rangle \Rightarrow ||\overline{r}|| = \left[\frac{1}{4} + 1 \right] = \left[\frac{1}{5} \Rightarrow \frac{1}{15} \right] = \left(-\frac{1}{2} \frac{2}{5}, -1 \right) \left[\frac{2}{5} \right]$
Key observation. $f(1,2) = 49 - 1 - 41 = 2$
So $(1,2)$ is on the level curve $f(x,y) = 2$, i.e. $19R^2 - y^2 = 2$
 $\sqrt{10}$
 $\frac{1}{5} \sqrt{10} = 10$ $\frac{1}{5} \sqrt{10} \sqrt{10} = 10$ $\frac{1}{5} \sqrt{10} \sqrt$

So Then gives:
14.57
tangent lone & at B to the lord set
$$f(x,y) = f|_{p_0}$$
 1 $\forall f|_{p_0}$
line & is contained in a plane B that:
. there point $(x_0, y_0, 0)$
. has normal vector $< f_x|_{p_0}, f_y|_{p_0}, 0 > .$
So the equation of B (in 3D) is:
 $(f_x|_{p_0}) (x-x_0) + (f_y|_{p_0}) (y-y_0) + 0 (z-0) = 0$
So the equation of the tangent line (in xy -plane)
to the level curve $f(x,y) = f(x_0, y_0)$ is:
 $(f_x(x_0, y_0)) (x-x_0) + (f_y(x_0, y_0)) (y-y_0) = 0$.
in short
 $\forall f|_{p_0} < x - x_0, y - y_0 > = 0$.
Ex 1.9 Find the equation of the tangent line \mathcal{L}
to the level set $f(x,y) = 2$ at the point $P_0 = (1,2)$
So $f(x_0, y_0) = \frac{x_0 + x_0}{2} + \frac{x_0 - x_0}{2} + \frac$

The for a differentiable
$$z = f(x, y)$$
 and a point $P_0 = (\pi_0, \psi_0)$
p845
If $\overline{\nabla} f|_{P_0} \neq \overline{O}$, then
 $\overline{\nabla} f|_{P_0}$ is normal to (the level curve thru P_0).
Why? Follows from chain rate see page 845.
a constant $c = f(x(t), y(t))$. Next 44t both sides to prot
 $O = \frac{\partial f}{\partial T_x} \frac{dx}{dt} + \frac{\partial f}{\partial T_y} \frac{dx}{dt} = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) \cdot (\frac{dx}{dt}, \frac{dx}{dt}) = \overline{\nabla} f \cdot f'(k)$
So $\overline{\nabla} f$ is normal to thing, vector f' so is normal to the level curve :
New and w = f(\pi, y, z) is a diff. scalar - valued function
 P^{849} and $\overline{r}(t) = \langle \pi(t), y(t), z(t) \rangle$ is a smooth path,
then $w = f(\pi(t), y(t), z(t))$ is diff orticable (w.r.t. $t)$
and $\frac{d}{dt} f(t) = \overline{\nabla} f(\overline{r}(k)) \cdot \overline{r}'(t)$.
Why? $\frac{df}{dt} = \frac{\partial f}{\partial T} \frac{dx}{dt} + \frac{\partial f}{\partial z} \frac{dy}{dt} = \frac{\partial f}{\partial T} \frac{f'(t)}{dt} \cdot \frac{dx}{dt} \cdot \frac{dy}{dt}$.
Remark : because ∇ differentiates coord-vice :
Algebra Rules for Gradients
1. Sum Rule: $\nabla(f + g) = \nabla f + \nabla g$
3. Constant Multiple Rule: $\nabla(fg) = (f(y) + g\nabla f)$ Scalar multipliers on left
5. Quotient Rule: $\nabla(\frac{f}{g}) = \frac{g\nabla f - \nabla g}{g^2}$ of gradients
5. Quotient Rule: $\nabla(\frac{f}{g}) = \frac{g\nabla f - f\nabla g}{g^2}$