14.5 Directional Derivative and Gradient Vector
kt out, but used, in Th 15 . In Th 13 p 817 § 14.3
Def. A trace curve (for short, trace) in \mathbb{R}^{3} is a curve in \mathbb{R}^{3} obtained by intersecting.
a surface in $\mathbb{R}^{3}(\mathrm{eg}$. the graph of $z=f(x, y))$ with a plane in \mathbb{R}^{3}

Directional Derivative
for some $\varepsilon>0$.
Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ with $\left(x_{0}, y_{0}\right):=P_{0} \varepsilon D^{2} \subseteq \mathbb{R}^{2}$ and $N_{\varepsilon}\left(\left(x_{0}, y_{0}\right)\right) \stackrel{\downarrow}{\subseteq} D^{2}$

- Recall Partial Derivatives

$$
\text { - } \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

is the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{r}

$$
\text { - } \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

is the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{j}

- Now take any unit vector $\vec{u}=\left\langle u_{x}, u_{y}\right\rangle$

Def The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{u} is

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h u_{x}, y_{0}+h u_{y}\right)-f\left(x_{0}, y_{0}\right)}{h} .
$$

So $D_{\vec{u}} f\left(x_{0}, y_{0}\right)$ is the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{u}
Def For any (nonzero) vector \vec{v}.
The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \vec{v} is

$$
D \frac{\vec{v}}{\|\vec{v}\|} f\left(x_{0}, y_{0}\right)
$$

\& need to \quad normalize \vec{v} !

Geometric Interpretation of Directional Derivative

$$
D_{\vec{v}} f\left(x_{0}, y_{0}\right)
$$

for $\underbrace{z=f(x, y)}$ and $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ graph is a surface in \mathbb{R}^{3}
\uparrow direction in $x y$-plane get surface 5

The slope of the trace curve C at P_{0} is $\lim _{Q \rightarrow P}$ slope $(P Q)$; this is the directional derivative

$$
\left(D_{\mathbf{u}} f\right)_{P_{0}} .
$$

- How to compute $D_{\vec{a}} f$?.... use gradient (next. page)

Def If $f: D^{2} \rightarrow \mathbb{R}$ with $P=(x, y) \varepsilon D^{2} \leq \mathbb{R}^{2}$, then $14,5,3$

- the gradient vector (forshort, gradient) of f is

$$
\begin{array}{rlr}
\overline{\nabla f}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle & \Delta\left[\begin{array}{l}
\text { book /MML } \\
\text { Short hand }
\end{array}\right. \\
\overrightarrow{\left.\bar{\nabla} f\right|_{p}=\vec{\nabla} f(x, y)} \underset{y}{v}=\left\langle\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right\rangle & \leftrightarrow\left[\begin{array}{l}
\text { Prof. G. } \\
\text { long version }
\end{array}\right.
\end{array}
$$

Lremind us $\vec{\nabla}$ is a vector and $\stackrel{\rightharpoonup}{\nabla} f: D^{2} \rightarrow \gamma^{2}$.
Ex. If $f(x, y, z)=x^{2}+y^{3}+z^{4}$, then $\vec{\nabla} f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\left\langle 2 x, 3 y^{2}, 4 z^{3}\right\rangle$.
Recall Directional Derivative is defined by a limit.
Thy Directional Derivative as a Dot Product 4 easier than a limit.
Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ with $\left(x_{0}, y_{0}\right):=P_{0} \varepsilon D^{2} \subseteq \mathbb{R}^{2}$ and $N_{\varepsilon}\left(\left(x_{0}, y_{0}\right) \subseteq D^{2} w \varepsilon>_{0}\right.$.

- Take ANY (non zero) VECTOR \vec{v} in \mathbb{R}^{2}.
w (book often leave out this word)
The directional derivative of f at P_{0} in the direction of \vec{v} is

$$
\left.D_{\frac{\vec{v}}{\|\vec{v}\|}} f\right|_{P_{0}}=\left.\vec{\nabla} f\right|_{P_{0}} \cdot \frac{\vec{v}}{\|\vec{v}\|}
$$ case

So if \vec{v} is unit vector (i.e. $\|\vec{v}\|=1$) then

$$
D_{\vec{u}} f=\vec{\nabla} f \cdot \vec{u}
$$ case

Recall ${ }_{\vec{u}} f\left(x_{0}, y_{0}\right)$ is the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the dir ection of \vec{u}

Recall Example from $\S 14.3$ (and Desmos)
Ex 1. Let

$$
f(x, y)=\sqrt{9-x^{2}-y^{2}} \text { calculus } \begin{aligned}
& \text { friendly } \\
& \left(9-x^{2}-y^{2}\right)^{1 / 2}
\end{aligned}
$$

1.1. $\frac{\partial f}{\partial x}(x, y)=\frac{-x}{\sqrt{9-x^{2}-y^{2}}}$
$1.2 f_{y}(x, y)=\frac{-y}{\sqrt{9-x^{2}-y^{2}}}$

$$
1.3 \quad f_{y}(1,2)=-1
$$

Let continue with this example

$$
\begin{aligned}
& 1.4 \quad f_{x}(1,2)=\frac{-1}{\sqrt{9-1-4}}=\frac{-1}{\sqrt{4}}=-\frac{1}{2} \\
& 1.5 \vec{\nabla} f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{-x}{\sqrt{9-x^{2}-y^{2}}}, \frac{-y}{\sqrt{9-x^{2}-y^{2}}}\right\rangle \\
& 1.6 \vec{\nabla} f(1,2)=\left\langle f_{x}(1,2), f_{y}(1,2)\right\rangle=\left\langle-\frac{1}{2},-1\right\rangle
\end{aligned}
$$

1,7 Find the (directional) derivative of f at the point $(1,2)$
Soln in the direction of $\vec{v}=\langle 3,4\rangle$.

$$
\begin{aligned}
\text { Want }\left.\Rightarrow\left(D_{\frac{\vec{v}}{\|\vec{v}\|}} f\right)\right|_{(1,2)} & \stackrel{\text { Know }}{=} \underbrace{}_{\sqrt[v E x 1,5]{ }} \cdot \frac{\vec{v}}{\|(1,2)} \\
& =\left\langle-\frac{1}{2},-1\right\rangle \cdot \frac{\langle 3,4\rangle}{\sqrt{3^{2}+4^{2}} \|}
\end{aligned}>
$$

Explore Have/fix a function $z=f(x, y)$ and a point P. 14,5,5 Think a letting vary the: unit direction \vec{u}
Get

$$
\begin{aligned}
& \left.D_{\vec{n}} f\right|_{p}=\left.\vec{\nabla} f\right|_{p} \cdot \vec{u}=\left\|\left.\vec{\nabla} f\right|_{p}\right\| \cos (\underbrace{\left.\measuredangle \Delta \vec{\Delta} f\right|_{p} \text { and } \vec{u}}) \\
& \left(.\left.\Delta \Delta\right|_{p} \text { and } \vec{u}\right) \text { varies from } 0 \xrightarrow{+3} \frac{\pi}{2} \rightarrow \pi \\
& \text { so } \cos \left(\left.\begin{array}{l}
\Delta \\
f
\end{array}\right|_{p} \text { and } \vec{u}\right) \text { varies from } 1 \pm 0 \rightarrow-1 \\
& \text { so }\left.\quad D_{\vec{k}} f\right|_{p} \quad \text { varies from }\left\|\left.\vec{v} f\right|_{p}\right\| \rightarrow 0 \rightarrow-\left\|\left.\vec{\nabla} f\right|_{p}\right\| \\
& \text { so as the direction } \vec{u} \text { varies get: } \quad \hat{\imath} \quad \min
\end{aligned}
$$

Recall D $\vec{u} f\left(x_{0}, y_{0}\right)$ is the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the dir ection of \vec{u}.

Thus at a point P

- f increases most rapidly in the direction of $\left.\nabla f\right|_{p}, w$ rate af change $=\left\|\left.\vec{\nabla} f\right|_{p}\right\|$.
- f decreases must rapidly in the direction of $-\left.\bar{\nabla} f\right|_{p}, \omega$ rate of change $=\left\|\left.\vec{\nabla} f\right|_{p}\right\|$. and if $\left.\vec{\nabla} f\right|_{p} \neq \vec{O}$.
- f does not vary if $\left.\overrightarrow{\nabla f}\right|_{p} \perp \vec{u}$.

Revisit $E x 1 . \quad f(x, y)=\sqrt{9-x^{2}-y^{2}}$ and $P=(1,2)$

$$
\begin{aligned}
& \text { HAD } \\
& 1.5 \vec{\nabla} f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{-x}{\sqrt{9-x^{2}-y^{2}}}, \frac{-y}{\sqrt{9-x^{2}-y^{2}}}\right\rangle \\
& 1.6 \vec{\nabla} f(1,2)=\left\langle f_{x}(1,2), f_{y}(1,2)\right\rangle=\left\langle-\frac{1}{2},-1\right\rangle
\end{aligned}
$$

New:
1.8 A+ the point $P=(1,2), \dot{z}=f(x, y)$ is increasing most rapidly in the direction of $\left\langle-\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right\rangle \quad$ note $-\frac{1}{\sqrt{5}}\langle 1,2\rangle$

$$
\vec{v}=\left\langle-\frac{1}{2} ; 1\right\rangle \Rightarrow\|\vec{r}\|=\sqrt{\frac{1}{4}+1}=\frac{\sqrt{5}}{2} \Rightarrow \frac{\vec{v}}{|\vec{v}|}=\left\langle-\frac{1}{2} \frac{2}{\sqrt{5}},-1\left(\frac{2}{\sqrt{3}}\right)\right\rangle
$$

Key observation. $f(t, 2)=\sqrt{9-1-4}=2$
So $(1,2)$ is on the level curve $f(x, y)=2$, ice. $\sqrt{9-x^{2}-y^{2}}=2$

The For a differentiable $z=f(x, y)$ and a point $p_{0}=\left(x_{0}, y_{0}\right)$ p 845

If $\left.\overrightarrow{\vec{x}} f\right|_{p_{0}} \neq \stackrel{\rightharpoonup}{0}$, then
$\left.\stackrel{\rightharpoonup}{\nabla} f\right|_{P_{0}}$ is normal to (the level curve thru P_{0}). i.e. I to tang. line to level curve

Let's see what can get from this Thu... \rightarrow

So The gives:
$"\left(x_{0}, y_{0}\right)$
$\underbrace{\text { tangent line } \mathcal{L} \text { at } P_{0} \text { to the level set } f(x, y)=\left.\left.f\right|_{P_{0}} \perp \stackrel{\rightharpoonup}{\nabla} f\right|_{P_{0}}}$
line \mathcal{L} is contain ed in a plane P that:

- thru point $\left(x_{0}, y_{0}, 0\right)$
- has normal vector $\left\langle\left. f_{x}\right|_{p_{0}},\left.f_{y}\right|_{p_{0}}, 0\right\rangle$.

So the equation of $P($ in $3 D)$ is:

$$
\left(\left.f_{x}\right|_{p_{0}}\right)\left(x-x_{0}\right)+\left(\left.f_{y}\right|_{p_{0}}\right)\left(y-y_{0}\right)+0(z-0)=0
$$

So the equation of the tangent line (in $x y$-plane) to the level curve $f(x, y)=f\left(x_{0}, y_{0}\right)$ is:

$$
\left(f_{x}\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)+\left(f_{y}\left(x_{0}, y_{0}\right)\right)\left(y-y_{0}\right)=0
$$

in Short

$$
\left.\vec{v} f\right|_{p_{0}} \cdot\left\langle x-x_{0}, y-y_{0}\right\rangle=0
$$

Ex 1.9 Find the equation of the tangent line \mathcal{L} to the level set $f(x, y)=2$ at the point $P_{0}=(1,2)$
Soln $\stackrel{\rightharpoonup}{\nabla} f(1,2) \stackrel{E \times 16}{=}\left\langle-\frac{1}{2},-1\right\rangle$.

$$
\begin{gathered}
\left\langle-\frac{1}{2},-1\right\rangle \cdot\langle x-1, y-2\rangle=0 \\
-\frac{1}{2}(x-1)+(y-2)=0
\end{gathered}
$$

Rok: in slope-inter sept form, \mathcal{L} is $f(x)=-\frac{1}{2} x+\frac{5}{2}$.

Recall
The For a differentiable $z=f(x, y)$ and a point $P_{0}=\left(x_{0}, y_{0}\right)$ p845

If $\left.\overrightarrow{\vec{x}} f\right|_{p_{0}} \neq \overrightarrow{0}$, then
$\left.\stackrel{\rightharpoonup}{\nabla} f\right|_{P_{0}}$ is normal to (the level curve thru P_{0}).
Why? Follows from chain rule see page 845,
a constant $c=f(x(t), y(t))$. Nowt $d / d t$ both sides to get

$$
0=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\stackrel{\rightharpoonup}{\nabla} f \cdot r^{\prime}(t)
$$

So $\bar{\nabla} f$ is normal to tang. vector r^{\prime} so is normal to the level curve,
New and similar
Th If $w=f(x, y, z)$ is a diff. Scalar-valued function $p 849$ and $\dot{\vec{r}}(t)=\langle x(t), y(t), z / t)\rangle$ is a smooth path, then $w=f(x(t), y(t), z(t))$ is diff entiable (w.r.t. t) and $\frac{d}{d t} f(t)=\vec{\nabla} f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)$
$\frac{\text { Why? }}{\substack{\text { Chain } \\ \text { Ru re }}} \frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle$
Remark: because ∇ differchiates coord-wise:
Algebra Rules for Gradients

1. Sum Rule:
2. Difference Rule:
3. Constant Multiple Rule:
4. Product Rule:

$$
\begin{aligned}
& \nabla(f+g)=\nabla f+\nabla g \\
& \nabla(f-g)=\nabla f-\nabla g
\end{aligned}
$$

$$
\nabla(k f)=\overline{=} k \nabla f_{\text {vedod }}(\text { any number } k)
$$

5. Quotient Rule:

$$
\begin{aligned}
& \nabla(f g)=(f) \nabla g+g \nabla f \\
& \nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}
\end{aligned}
$$

