14.4 Chain Rule (CR)

$$
\begin{aligned}
& \text { diff }=\text { differentiable } \\
& \text { Tho }=\text { Theorem (a fact) } \\
& \text { Cor }=\text { Corollary (follows from a Chm } \text {) }
\end{aligned}
$$

Thy If: $w=f(x, y)$ is diff

$$
x=x(t) \text { and } y=y(t)
$$

are diff writ. t

$$
\text { then } w=f(x(t), y(t))
$$

and

$$
\text { is diff. writ } t
$$

$$
\frac{d w}{d t}(t)=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t)
$$

in other notation $\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}$

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$

$$
x=x(t)
$$

Chm 2 If:

$$
\begin{aligned}
& w=f(x, y, z) \\
& x=x(t) \text { and } y=y(t) \text { and } z=z(t)
\end{aligned}
$$

then $w=f(x(t), y(t), z(t))$

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d \dot{t}}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

DoExI
Th 3 If: $w=f(x, y, z)$
$x=g(r, s)$ and $y=h(r, s)$ and $z=k(r, s)$ arediff.
and then W has partial derivatives w.r.t. r and s

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \text { AND } \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial s}
$$

Rok If $W=f(x, y)$, can view $W=f(x, y, z)$ with w a constant function of z and supply Thy 3 to get Cor 4 (below). Let's think out Cor 5 is similar, with $w>f(x)$. \leftarrow betore pecking

Cor 4 If $w=f(x, y)$ and $x=g(r, s)$ and $y=h(r, s)$ are diff. 14,4,2 then w has partial der. writ r and s
and

$$
\begin{aligned}
& \text { TL: } w=f(x \\
& \frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \quad \text { AND } \frac{\partial w}{\partial s}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial s}
\end{aligned}
$$

Cor 5 If $w=f(x)$ and $x=y(r, s)$ is diff. then w has partial der. wry r and s and

TL!

$$
\begin{array}{l|l}
w=f(x) \\
\frac{\partial w}{\partial r}=\frac{d w}{d x} \frac{\partial x}{\partial r} & \text { AND } \quad \frac{\partial w}{\partial s}=\frac{d w}{d x} \frac{\partial x}{\partial s}
\end{array}
$$

Do Ex 2
Implicit Differentiation
The If $F(x, y)$ is diff. and the equation $F(x, y)=0$ defines a diff. function of x (think of as: a diff. function $y=g(x)$)
then

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

at any point where $F_{y} \neq 0$.
hm If $F(x, y, z)$ is diff. and
the equation $F(x, y, z)=0$ defines a diff. function of x and y
then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \text { and } \frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}
$$

at any point where $F_{z} \neq 0$.
Do Ex 3 and EX 4

Ex 1 Tho $1 / T h m 2$.
Let $W=x^{2} y+y+x z$ and: $y=\sin \theta$ $z=\theta^{2}$
1.1 Express $\frac{d w}{d \theta}$ as a function of θ.
1.2 Evaluate $\left.\frac{d w}{d \theta}\right|_{\theta=\frac{\pi}{2}}$

Sol
1.1 th

$$
\frac{d w}{d \theta}=
$$

Ex The 3 (and: $\operatorname{cor} 4, \operatorname{cor} 5)$
Let $w=x^{4} y+y^{2} z^{3} \quad$ where

$$
\begin{aligned}
& x=r s e^{t} \\
& y=r s^{2} e^{-t} \\
& z=r^{2} s \sin t .
\end{aligned}
$$

Evaluate $\frac{\partial w}{\partial s}$ when: $r=2, s=1, t=0$.

Sols.

Implicit Differentiation Examples
Ex 3 Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=6 x y$.
soln. $\quad x^{3}+y^{3}=6 x y \quad \Leftrightarrow \quad x^{3}+y^{3}-6 x y=0$.
So let $F(x, y)=$

Ex 4 Find $\frac{\partial z}{\partial x}$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
$\operatorname{soln}_{0} x^{3}+y^{3}+z^{3}+6 x y z=1 \Leftrightarrow x^{3}+y^{3}+z^{3}+6 x y z-1=0$.
So let $F(x, y, z)=$

