\& 14.3 Partial Derivatives Warning $\partial \neq \frac{d}{1}$ partial l derivative

Def. Let $f: D^{2} \rightarrow \mathbb{R}^{2}$ wi $N_{\varepsilon}\left(\left(x_{b}, y_{0}\right)\right) \subset D^{2} \subseteq \mathbb{R}^{2}$ for some $\varepsilon>0$.
The (first-order) partial derivatives of f at $\left(x_{0}, y_{0}\right)$
1.w.f.t. x is $\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \stackrel{\text { on }}{=} f_{x}\left(x_{0}, y_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}$
2. w.r.t. y is $\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \stackrel{\text { or }}{=} f_{y}\left(x_{0}, y_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}$

Rok

1. f_{x} is the rate of change of f as change x while holding y constant. To find f_{x}, different iate $f(x, y)$ w.r.t. x and treat y as a constant.
2, f_{y} is the rate of change of f as change y while holding x constant. To find f_{y}, different iate $f(x, y)$ w.r.t. y and treat x as a constant.
will use in Desmos 14.3 .1 : Partial Derv.
Ex 1. Let

$$
f(x, y)=\sqrt{9-x^{2}-y^{2}} \quad \underset{\text { friendly }}{\text { calculus }}\left(9-x^{2}-y^{2}\right)^{1 / 2}
$$

1.1. $\frac{\partial f}{\partial x}(x, y)=$
diff writ, treat as a constant: y.
$1.2 f_{y}(x, y) \stackrel{\text { notation }}{=} \frac{\partial f}{\partial y}(x, y)=$
diff writ y, treat as a constant: x
$1.3 f_{y}(1,2)=$

Ext $\frac{\partial}{\partial z} z e^{x y z}=$
diff. Writ z, treat as constants: x, y,

Second-Order Partial Derivative, $\quad N=$ notation.
Let $\quad f: D^{2} \rightarrow \mathbb{R}^{2}$ wi $N_{\varepsilon}\left(\left(x_{b}, y_{0}\right)\right) \subset D^{2} \subseteq \mathbb{R}^{2}$. for some $\varepsilon>0$.
Recall $f_{x}: D^{2} \rightarrow \mathbb{R}^{2}$ with $f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f$.
and $f_{y}: D^{2} \rightarrow \mathbb{R}^{2}$ with $f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f$.
Defs (and notation) for $2^{\text {nd }}$-orcler

1. $f_{x x} \stackrel{d f}{=}\left(f_{x}\right)_{x}=\frac{\partial f_{x}}{\partial x}=\frac{\partial}{\partial x} f_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$
2. $f_{y y} \stackrel{\text { def }}{=}\left(f_{y}\right)_{y}=\frac{\partial f_{y}}{\partial y}=\frac{\partial}{\partial y} f_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$
"mired"
[3. $f_{x y} \stackrel{\text { diff }}{=}\left(f_{x}\right)_{y}=\frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial y} f_{x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\frac{\partial y \partial x}{b}}$ boas
that
partials
w rt
at least
3. $f_{y x} \frac{\operatorname{det}}{-}\left(f_{y}\right)_{x}=\frac{\partial f_{y}}{\partial x}=\frac{\partial}{\partial x} f_{y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$

2 differ ant
<n order. n
start wot 4
next wit x
Rm : Similarly for functions of 3-variubbes
Similar ly for higher order.
$3^{\text {rd }}-$ order

$$
\begin{aligned}
f_{x y z} & =\left(f_{x y}\right)_{z}=\frac{\partial}{\partial z} f_{x y}=\frac{\partial}{\partial z}\left(f_{x}\right)_{y}
\end{aligned}=\frac{\partial}{\partial z} \sqrt{\frac{\partial}{\partial y} \frac{\partial}{\partial x} f}=\frac{\partial^{3} f}{\partial z \partial y \partial x}
$$

$$
4^{\text {th }} \text {-order } \quad f_{y y x x} \frac{\partial^{4} f}{2 x^{2} \partial y^{2}}
$$

Ex 3 Find all the second partial derivatives of

$$
f(x, y)=y^{3}+5 y^{2} e^{4 x}-\cos \left(x^{2}\right)
$$

First need the 1 It order:

$$
\begin{aligned}
\cdot f_{x}(x, y) & =0+5 y^{2} e^{4 x}(4)-\left[-\sin \left(x^{2}\right)\right][2 x]= \\
f_{x}(x, y) & \left.=20 y^{2} e^{4 x}+2 x \sin x^{2}\right] \& 1^{\text {st }} \text { order } \\
\text { - } f_{y}(x, y) & =3 y^{2}+10 y e^{4 x}
\end{aligned}
$$

Now can do the $2^{\text {nd }}$ order:

$$
\begin{aligned}
& {\left[\begin{array}{l}
f_{x x}(x, y)= \\
\cdot f_{y y}(x, y)=
\end{array}\right.}
\end{aligned}
$$

Theorem. Mixed Partials / Clairaut. in French ~ 1750
Let $f: D^{2} \rightarrow \mathbb{R}$ w $D^{2} \subseteq \mathbb{R}^{2}$ and D^{2} is open
Let $f_{x y}$ and $f_{y x}$ be continuous on Then for all $\left(x_{0}, y_{0}\right) \varepsilon D^{2}$

$$
\begin{equation*}
f_{x y}^{\prime}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right) \tag{nd}
\end{equation*}
$$

In general $\left\{w_{i k} k_{i}\right]$
Let $g: D^{n} \rightarrow \mathbb{R}$ ar $D^{n} \leq \mathbb{R}^{n}$ and D open . Let $k \in \mathbb{N}$ Let all mixed partial of orcler k are cont. on U.
Then all mixed are equal on U.
[Imade up]
E_{x} Find $f_{z y x x}$ for $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ wT

$$
f(x, y, z)=x\left(z^{2}+y e^{z}\right)^{3}
$$

Soln

$$
\begin{aligned}
& f_{z y \lambda x}=\frac{\partial}{\partial x} \frac{\partial}{\partial x} \underbrace{\frac{\partial}{\partial y} \underbrace{\frac{\partial}{\partial z} f}_{\text {yucky }}}_{\text {yuckier }}=\frac{\partial f^{(4)}}{\underbrace{2} x \partial y \partial z} \\
& \text { All mixed partials of } \\
& \text { order } 4 \text { are cont. } \\
& \text { So mixed partial Tum } \\
& \text { says can do partials } \\
& \text { in any order. }
\end{aligned}
$$

Geometric Interpretation of partial derivatives

- See Desmos 14.3.1 -goes with Ex 1.
- Start wi a surface

$$
\mathcal{L} \text { is } z=f(x, y)
$$

- Fix a point

$$
P=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right) \text { on } \mathcal{S} \text {. }
$$

To examine

$$
f_{y}\left(x_{0}, y_{0}\right)
$$

fix $x=x_{0}$. So have a plane
P is $x=x_{0}, \&$ is parallel to $y z$-plane.

- Consider the curve ζ in plane P and on ξ, i.e.

$$
\zeta:=P \cap \zeta
$$

Staying in the plane $P: x=x_{0}$ \& is parallel to $y z$-plane the tangent line \mathcal{L} to ζ

- at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$
- in the plane $x=x_{0}$ (so are $\| 1 y z$-plane)
will have the equation

$$
z-f\left(x_{0}, y_{0}\right)=m\left(y-y_{0}\right)
$$

where $m=\frac{\Delta z}{\Delta y}$

So
keeping x fixed so is plane llyzplane
(*) $f_{y}\left(x_{0}, y_{0}\right)=$ slope of tang. line at $\left(x_{0}, y_{0}\right)$ to the curve $\mathcal{\cap} \cap\left[x=x_{0}\right]$
(*) $f_{x}\left(x_{0}, y_{0}\right)=$
$\mathcal{S} \cap\left[y=y_{0}\right]$
keeping y fixed
so is a plane 11 zx-plane.

This page set-up.
Have $f: D^{2} \rightarrow \mathbb{R}$. with $\left(x_{0}, y_{0}\right) \in D^{2} \subseteq \mathbb{R}^{2}$ and D^{2} is open.
Let $\Delta x=x-x_{0}$ and $\Delta y=y-y_{0}$ and

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

Def (some linear algebra would help now....)
Let $f_{x \text { and }} f_{y}$ exist at $\left(x_{0}, y_{0}\right)$. Let

- Then f is differentiable at $\left(x_{0}, y_{0}\right)$ provided

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left\|f(x, y)-\left[f\left(x_{0}, y_{0}\right)+\left(f_{x}\left(x_{0} y_{0}\right)\right) \Delta x+\left(f_{y}\left(x_{0}, y_{0}\right)\right)(\Delta y)\right]\right\|}{\|\langle\Delta x, \Delta y\rangle\|}=0
$$

- f is differentiable $\Leftrightarrow f$ is differentiable at each $(x, y) \in D^{2}$.
- The graph of f is a smooth surface $\left(\right.$ in $\left.\mathbb{R}^{3}\right) \Longleftrightarrow$
f is differentiable at each $(x, y) \in D^{2}$.
Theorem 3 (p 828)
Let f_{x} and f_{y} be continuous at $\left(x_{0}, y_{0}\right) \varepsilon D^{2}$. Then

$$
\Delta z=\underbrace{\left[\left(f_{x}\left(x_{0}, y_{0}\right)\right)(\Delta x)+\left(f_{y}\left(x_{0}, y_{0}\right)\right)(\Delta y)\right]}_{\text {approximates } \Delta z}+\underbrace{\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y}_{\text {with an lerror" }}
$$

where $\lim _{\Delta x \rightarrow 0} \varepsilon_{1}=0$ and $\lim _{\Delta y \rightarrow 0} \varepsilon_{2}=0$.

Corollary f is differentiable at $\left(x_{0}, y_{0}\right) \Rightarrow f$ continous on D.
Remark f cont. \Rightarrow diff. but do have....
Corollary f_{x} and f_{y} continuous on $D \Rightarrow f$ differentiable on D

