\$13.3 Arc Length (AL)

- Given a curve ξ parameterized by

$$
\vec{r}(t)=\langle x(t), y(t), z(t)\rangle, \quad a \leq t \leq b .
$$

- Goal: Find the length of ζ,
\rightarrow called "arc length"
(AL).
- Game Plan: express the Archength as an integral w.r.t. t.

So Want

$$
A L=\int_{a}^{b}(\underbrace{\text { some mess involving } t)}_{a \cdot k \cdot a \cdot(a \text { function } f t)=[a, b] \rightarrow \mathbb{R}^{1}} d t
$$

- Think/recall Riemann Sums $\int_{a}^{b} f(t) d t \approx \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t_{i}$
*) An ir. unitive approach (will use this approach lots).

Typical element

\approx \square
$\vec{r}^{\prime}\left(t_{i}\right)$
ΔA_{i}
So have

$$
\begin{aligned}
& \overrightarrow{\Delta S}_{i} \approx \vec{r}^{\prime}\left(t_{i}\right) \overparen{\Delta t_{i}} \\
& \left\|\overrightarrow{\Delta S}_{i}\right\| \approx\left\|r^{\prime}\left(t_{i}\right)\right\| \Delta t_{i}
\end{aligned}
$$

To get an approximation of AL of whole cure add up the lengths of all the small segments, i.e. ald up all the $\left\|\Delta s_{i}\right\|$.

$$
\begin{aligned}
A L & \approx \sum_{i=1}^{n}\left\|\overrightarrow{\Delta s}_{i}\right\| \\
& \approx \sum_{i=1}^{n}\left\|r^{\prime}\left(t_{i}\right)\right\| \Delta t_{i} \approx \text { from dividing }[a, b] \text { into } \cong \text { pieces. }
\end{aligned}
$$

Next, think of dividing $[a, b]$ into smaller 4 smaller pieces, i.e. let $n \rightarrow \infty$, to get

$$
A L=\int_{a}^{b}\left\|r^{\prime}(t)\right\| d t
$$

Def. The are length of a smooth curve \wp
parameterized by the path $\vec{r}:[a, b] \rightarrow \gamma^{3}$.
that is traced exactly once as t goes fran a to b, is

$$
A L=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

p.s.: \vec{r} smooth means $\frac{d \vec{r}}{d t}$ is continuous and never $\overrightarrow{0}$.

Helpful notation:

$$
\begin{aligned}
& \text { - } \mid d \vec{s}:=\vec{r}^{\prime}(t) d t \quad \leftarrow \overrightarrow{\Delta S}_{i} \approx \vec{r}^{\prime}\left(t_{i}\right) \Delta t_{i} \\
& \text { - db } \frac{\text { think }}{\text { otis }}\|d \vec{s}\| \prime \nmid \leftarrow\left\|\widehat{\Delta s_{i}}\right\| \approx\left\|r^{\prime}\left(t_{i}\right)\right\| A t_{i} \\
& d s:=\underbrace{}_{\text {integrating factor " }^{\left\|\vec{r}^{\prime}(t)\right\|} d t \cdot \square} \\
& A L=\int_{a}^{b}\left\|\overrightarrow{\vec{r}}^{\prime}(t)\right\| d t=\int_{a}^{b} d s
\end{aligned}
$$

Recall we had?

Ex Find the arc length (AL) of the helix

$$
\vec{r}(t)=\langle\cos t, \sin t, t\rangle \text { for } 0 \leq t \leq \pi
$$

Soln. If you want, for picture see Desmus 13.1.1 helix.

$$
\begin{aligned}
A L & =\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& \left.=\int_{0}^{\pi} \|<-\sin t, \cos t, 1\right\rangle \| d t \\
& =\int_{0}^{\pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}+1^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t \\
& =\int_{0}^{\pi} \sqrt{1+1} d t=\sqrt{2} \int_{0}^{\pi} d t=\sqrt{2} \pi
\end{aligned}
$$

Hey -neat problem - Let's dive into it abit.
Let $P_{t}=$ point on curve at time t. so $P_{t}=(\cos t, \sin t, t)$
So $P_{0}=(1,0,0)$ and $P_{\pi}=(-1,0, \pi)$

Next:

- Think of the helix on the cylinder $x^{2}+y^{2}=1$
- draw in the line $x=1$ (do!)
- cut the cylinder along the line $x=1$ and lie the ysinderflat.

Recall::
Def. The are length of a smooth curve C°
parameterized by the path $\vec{r}:[a, b] \rightarrow \gamma^{3}$.
that is traced exactly once as t goes from a to b, is

$$
A L=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Note

Def The arc length parameter (with base point t_{0}) of a smooth curve ζ parameterized by the path \vec{r} is

$$
s(t)=\int_{t_{0}}^{t}\left\|r^{\prime}(\tau)\right\| d \tau
$$

Thus

$$
S(t)=\left\{\begin{array}{ll}
A L \text { álong } \& \text { from } \\
\text { time } t_{0} \rightarrow t
\end{array}, \text { when } \quad t_{0}<t\right.
$$

Recap from last few pages. Have done so far:
Ex Find the arc length (AL) of the helix

$$
\vec{r}(t)=\langle\cos t, \sin t, t\rangle \text { for } 0 \leq t \leq \pi \text {. }
$$

son. If you want, for picture see Desmos 13.1.1 helix.

$$
A L=\int_{0}^{\pi}\left\|\Gamma^{\prime}(t)\right\| d t=\int_{0}^{\pi} \sqrt{2} d t=\sqrt{2} \pi
$$

Def The arc length parameter (with base point t_{0})
of a smooth curve 6 parameterized by the path \vec{r} is

$$
s(t)=\int_{t_{0}}^{t}\left\|r^{\prime}(\tau)\right\| d \tau
$$

Ex. Let $\vec{r}(t)=\langle\cos t, \sin t, t\rangle,-\infty<t<\infty$.
Let ξ be cure \bar{r} traces out.

- Find arc length parameter of 6 , with base \sin, $t_{0}=0$.
ii. As a function of time t
express the arc length of the part of ζ traced out from time $t=0$ to time $t>0$.
Remark: your answer should not contain an integral,
Answer:

$$
s(\pi)=
$$

Soln $s(t)=\int_{t_{0}}^{t}\left\|r^{\prime}(\tau)\right\| d \tau \stackrel{d}{=} \int_{0}^{t r o m} \sqrt{2} d \tau=\left.\sqrt{2} \tau\right|_{\tau=0} ^{\tau=t}$

$$
=\sqrt{2} t-\sqrt{2}(0)=\sqrt{2} t
$$

$$
\Rightarrow \quad S(x)=\sqrt{2} t . \Delta \text { go put in box! }
$$

Note $S(t)=\sqrt{2} t$ is a line thru pt $(0,0)$ ur slope $=\sqrt{2}$. and $S(\pi)=\sqrt{2} \pi$ (compare to last (ie. above now) example).
AL from time: 0 to $t \mapsto S \uparrow$

This finish $B \cdot 3$.

