\$ 13.2 Integrals of paths

Setting • Griven a path $\vec{F}: \vec{D}^2 \rightarrow \vec{V} \vec{M}$ (Usually m=2 or m=3) domain \vec{D}^2 is interval of \vec{R}^2 and best of all vectors in \vec{R}^m So $\vec{F}(t) = \langle f_1(t), f_2(t), \dots, f_m(t) \rangle$ where each $f_i : D^1 \rightarrow \mathbb{R}^1$. note: fi is R1-valued so can use Cak. 1 & 2 methods on fi Given an interval [a, b] ⊆ D¹ ⊆ R¹
 Denote an arbitrary constant vector È ± ∠C1, C2, C, Cm> EV^M Def Definite Integral of Fover [a,b] $S_{a}^{b} \stackrel{=}{\neq} (t) dt = S_{a}^{b} \langle f_{1}(t), f_{2}(t), ..., f_{m}(t) \rangle dt = \langle S_{a}^{b} f_{1}(t) dt, S_{a}^{b} f_{2}(t) dt, ..., S_{a}^{b} f_{1}(t) dt \rangle$ also written by def. <u>Def</u> Indefinite Integral of $\vec{F}: D^2 \to V^M$ is $\vec{G}: D^2 \to V^M$, denoted $S\vec{F}(t) dt = \vec{G}(t) + \vec{C}$, $\Leftrightarrow \qquad \vec{F} = \vec{G}' \qquad \text{on } ID^2$. $\frac{E_{x}I_{x}}{S} < I, 2t > dt = < ___, __ > \frac{clso}{\delta k} < __, __ > + C$ $soln \int \langle 1, 2t \rangle dt =$ $\frac{E \times 2}{5} \frac{5^6}{5} < 1, 2t > dt = \langle \underline{}, \underline{} \rangle$ $\frac{W_{ay1}}{W_{se} \in X1} \int_{5}^{6} \langle l, 2t \rangle dt =$ Way 2 56 <1,2+> 1+ >

Know More on Motion So 13.2.2
d (
$$\vec{r}$$
 (t) position vector S Swrt t
d (\vec{r} (t) velocity vector R Swrt t
d (\vec{r} (t) velocity vector R Swrt t
d (\vec{r} (t) velocity vector R Swrt t
dt (\vec{a} (t) acceleration vector S
So: $\vec{s} \cdot \vec{r}$ (t) dt = $\vec{s} \cdot \vec{r}$ (t) dt = \vec{r} (t) + \vec{C} and $\vec{s} \cdot \vec{t}$ (t) dt = $\vec{s} \cdot \vec{r}$ (t) \vec{k} .
Ex3 A puffo is moving along a curve with this
(a) \vec{a} (t) = $\langle 0, 2, qe^{3t} \rangle \leftarrow recall \vec{a}$ (t) = \vec{r}' (t) = \vec{r}' (t)
(b) \vec{v} (0) = $\langle 5, 0, 3 \rangle \leftarrow recall \vec{a}$ (t) = \vec{r}' (t)
(c) \vec{r} (1) = $\langle 5, 8, e^3 \rangle$.
His position vector is util in the blanks
 \vec{r} (t) = $\langle -p \rangle = 2$
Ex3 (reworded) Solve the differential equation $\frac{d^2 \vec{r}$ (t) = $\langle 0, 2, qe^{3t} \rangle$
that satisfies \vec{r}' (t) = $\langle 5, 0, 3 \rangle$ and \vec{r} (l) = $\langle 5, 8, e^3 \rangle$.