Ch 13: Nector valued Functions and Motion in Space
Nitetron
$$D^{2} \text{ is an interval of } \mathbb{R}^{4} \text{ Eq}: [c_{0}:] \text{ for } (-\infty, \infty) \stackrel{\text{(s)}}{=} \mathbb{R}^{4} \text{ or } [c_{0}:2T] \text{ .}$$

$$R^{2}, \mathbb{R}^{3}, \mathbb{R}^{m} \text{ , So have a point } (1,2,3) \in \mathbb{R}^{3} \text{ , usually,} \\ \text{L sot} \text{ collection of all points in } \mathbb{R}^{m}.$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{m} \text{ , So have a Vector } (1,2,3) \in \mathbb{R}^{3} \text{ , usually,} \\ \text{L sot} \text{ collection of all points in } \mathbb{R}^{m}.$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{m} \text{ , So have a Vector } (1,2,3) \in \mathbb{R}^{3} \text{ , usually,} \\ \text{L sot} \text{ collection of all vectors in } \mathbb{R}^{m}.$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{m} \text{ , So have a Vector } (1,2,3) \in \mathbb{R}^{3} \text{ , usually,} \\ \text{L sot} \text{ collection of all vectors in } \mathbb{R}^{m}.$$

$$\mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{m} \text{ , So have a Vector } (1,2,3) \in \mathbb{R}^{3} \text{ , usually,} \\ \text{L sot} \text{ collection of all vectors in } \mathbb{R}^{m}.$$

$$\mathbb{C}h 13 \text{ considers functions } \mathbb{P} : \mathbb{D}^{4} \longrightarrow \mathbb{W}^{m}.$$

$$\mathbb{C}h 13 \text{ considers functions } \mathbb{P} : \mathbb{D}^{4} \longrightarrow \mathbb{W}^{m}.$$

$$\mathbb{P}^{1} \text{ vectors in } \mathbb{R}^{2} \text{ , vector in } \mathbb{R}^{2} \text{ , vector in } \mathbb{R}^{2}.$$

$$\mathbb{P}^{1} \text{ bef } \mathbb{R}^{1} \text{ , as called a vector-valued function, } \text{ , is a function } \\ \mathbb{P} : \mathbb{D}^{4} \longrightarrow \mathbb{W}^{m}.$$

$$\mathbb{W}hen \quad m > 3, \quad \mathbb{P}. \text{ has the form } \\ \mathbb{F}(t) = \langle f_{1}(t), f_{2}(t), f_{3}(t) \rangle \text{ ustare } t \in \mathbb{D}^{1}.$$

$$\mathbb{W} \text{ winch can also be written as } \\ \mathbb{F} \text{ b} = \langle x(t), y(t), z(t) \rangle, z(t) \rangle \text{ whare } t \in \mathbb{D}^{1}.$$

$$\mathbb{O} \text{ one twake of the hard/end-pt of \mathbb{P}^{2} as traceting out (i.e. \text{ parametering ing) } a (12.3) \text{ space curve } \mathbb{S} \text{ in } \mathbb{R}^{m}.$$

$$\mathbb{D} \text{ o Ex } 1 = \mathbb{O} \text{ on } \mathbb{P}^{2} \mathbb{S}.$$

Def. (Calculus I). For
$$f: D^{2} \Rightarrow \mathbb{R}$$
 and $L \in \mathbb{R}$ 13.1.2
im $f(t) = L$ means
 $t \Rightarrow t_{0}$
for each $E > 0$, there is $S > 0$ satisfying
 $if O < 1 t + t_{0} < S$ and $t \in D^{1}$ then $|f(t) - L| < \varepsilon$.
Def. (Calculus II). For $F: D^{1} \Rightarrow W^{m}$ and $\int_{t} E W^{m}$
for each $E > 0$, there is $S > 0$ satisfying
 $if O < 1 t + t_{0} < S$ and $t \in D^{1}$ then $|f(t) - L| < \varepsilon$.
Def. (Calculus II). For $F: D^{1} \Rightarrow W^{m}$ and $\int_{t} E W^{m}$
for each $E > 0$, there is $S > 0$ satisfying
 $if O < 1 t + t_{0} < S$ and $t \in D^{1}$ then $||F(t) - \tilde{L}|| < \varepsilon$.
Use bes can work coordinate wise
 $\lim_{t \to t_{0}} F(t) = \tilde{L}$ def. $\lim_{t \to t_{0}} \langle f_{1}(t), f_{0}(t), \dots, f_{m}(t) \rangle = \langle t_{1}, t_{2}, \dots, t_{m} \rangle$
 $t \Rightarrow t_{0}$
 $if = t_{0}$ def. $\lim_{t \to t_{0}} \langle f_{1}(t), f_{0}(t), \dots, f_{m}(t) \rangle = \langle t_{1}, t_{2}, \dots, t_{m} \rangle$
 $t \Rightarrow t_{0}$
 $if = t_{0}$ def. $\lim_{t \to t_{0}} \langle f_{1}(t), f_{0}(t), \dots, f_{m}(t) \rangle = \langle t_{1}, t_{2}, \dots, t_{m} \rangle$
 $t \Rightarrow t_{0}$
 $if = t_{0}$ def. $\lim_{t \to t_{0}} f_{1}(t) = f_{0}(t_{0})$
 $if = t_{0}$ def. $\lim_{t \to t_{0}} f_{1}(t) = f_{0}(t_{0})$
Def. 2a F is continuous at $t \Rightarrow t_{0}$ def. $\lim_{t \to t_{0}} f_{1}(t) = f_{0}(t_{0})$
Def. 2b F is contine on D^{1} des F is cast at such the D^{1} .
 $D = Ex 7 - 9$ on $Pasc 6$.
 $D^{1} 3a$ F is differentiate at t def. f_{1} is diff. at t
in which case $F': D^{1} \Rightarrow T^{m}$ and J
 $F' = H^{2} = d\tilde{F} = \lim_{t \to \infty} \tilde{F}(t + L^{1}) - \tilde{F}(t) = \langle df_{1}, df_{1}, df_{2}, df_{2}, df_{2}, df_{3}, df_{4}, df_{5}, df$

Motion - a typical application.

For a partical (aka putto) flying thru space on a smooth curve & with position vector $\vec{r}: D' \rightarrow \gamma^3$. 1. \vec{r} (+) = $\langle \chi (+), \chi (+), \chi (+) \rangle$ position redor 2. $\vec{v}(t) = \frac{d}{dt} \vec{r}(t)$ velocity vedor. 3. る(生) = 生 では) accoleration vector 4. v(t) = 11 v (A) 1 speed (scalar) function Warning: Ild r lol + d lir lt 11 5. If \$ (+,) \$ 0 , then : · vito) is tangent to to at to and ps: useful for finding tangent lines to curre. DO EX 10-15, starting page 6

13.1.4

Have
$$\overrightarrow{r}(t) = \langle 4\sin t, 2\cos t \rangle$$
, $0 \le t \le \sqrt{2}$. Bilf
Ex7 $\lim_{x \to \sqrt{4}} \overrightarrow{r}(t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} \overrightarrow{r}(t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (4\sin t, 2\cos t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (4\sin t, 2\cos t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (4\sin t, 2\cos t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (4\sin t, 2\cos t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (5\cos t) = (5\cos t) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (5\cos t) = (5\cos t) = \langle \dots , 1 \rangle$
 $if(t) = \overrightarrow{r}(t) = D_x \langle n \rangle$
 $if(t) = \overrightarrow{r}(t) = D_x \langle n \rangle$
 $if(t) = \overrightarrow{r}(t) = D_x \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle \dots , 1 \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle n \rangle$
 $\lim_{x \to \sqrt{4}} (1 = 1) = \langle$

Ex 15 So our puffo has:

position vector is: $\vec{r}(t) = \langle 4\sin t, 2\cos t \rangle$ velocity vector is: $\vec{r}(t) = \vec{r}(t) = \langle 4\cos t, -2\sin t \rangle$ accelation vector is: $\vec{a}(t) = =$

End of Examples using
$$\tilde{r}(t) = \langle 4\sin t, 2\cos t \rangle$$

 $\overline{v}\left(\frac{\pi}{2}\right) = \langle \dots \rangle$

$$\overline{r}(t) = \zeta \cos t$$
, $\sin t$, $t > for 0 \le t \le 2\pi$
Find is velocity rector at $t = \pi/2$,

soln
$$\vec{r}(t) = \vec{r}'(t) = \zeta_{1}, \ldots, \zeta_{n}$$

Question. What will happen when the Grinch turns off the magnetic switch at time $\chi = T/2$?

ExB of when
$$\overline{r}$$
 is on $\frac{2}{30}$ a cirde with Center =0rigin
Limit use in 13.4.
If the length of \overline{r} is constant, then $\overline{r} \cdot \frac{d\overline{r}}{d\overline{r}} = 0$
Recall, for circles
Soln. $\|\overline{r}(t)\| = C \Rightarrow C^{-}_{-} |\overline{r}(t)|^{-}_{-} = \overline{r}(t) \cdot \overline{r}(t)$
See below $H_{-} \Rightarrow C^{-}_{-} |\overline{r}(t)|^{-}_{-} = \overline{r}(t) \cdot \overline{r}(t)$
 $\Rightarrow 0 = \overline{r}(t) \cdot \overline{r}(t) + \overline{r}(t)$
 $\Rightarrow 0 = \overline{r}(t) \cdot \overline{r}(t)$
 $\Rightarrow 0 = \overline{r}(t) + \overline{r}(t) = \overline{r}(t)$
 $\Rightarrow 0 = \overline{r}(t) + \overline{r}(t) = 0$
 $\Rightarrow 0 = \overline{r}(t) - \overline{r}(t) + \overline{r}(t) = 0$
 $\Rightarrow 0 = \overline{r}(t) - \overline{r}(t) + \overline{r}(t) = 0$
 $\Rightarrow 0 = \overline{r}(t) - \overline{r}(t) + \overline{r}(t) = 0$
 $\Rightarrow 0 = \overline{r}(t) - \overline{r}(t) + \overline{r}(t) + \overline{r}(t) = 0$
 $\Rightarrow 0 = 0$