\$ 12.6 Cylinders and Quadric Surfaces
Cylinders

We covered cylinders in $\$ 12.1$.
Recall the below class notes from $\$ 12.1$.
Def From $\leqslant 12.6$. A cylinder $S \leftrightarrow a f a n c y y$.
In \mathbb{R}^{3}, start with:
and - a generating curve ξ in a plane θ

- a generating line \mathcal{L} that inter sects P in exactly 1 point.

The cylinder $\$$ (generated by ζ and \mathcal{L}) is the surface containing of the set of points on all lines which

- intersect 6
- are parallel to \mathcal{L}.

Rok. To visual \mathcal{S}, move line \mathcal{L} to parallel lines passing thru $\mathscr{6}$.

A cylinder is one type of a surface.

Next: 2 Examples of

Cylinders generated by

- curve ζ in an coordinate plane (eg $x y$-plane)
- line \mathcal{L} is the coord. axis of the unused coord. of ξ (eg z-axis)

Ex 1 See Damns 12,1.2.
Let ξ be $z=3-y$ and \mathcal{L} be x-axis.
First graph F. When $x=0, z=3-y$ is a line in the $y z$-plane and goes thru the points $(0,0,3)$ and $(0,3,0)$.
second, to generate the cylinder \mathcal{E}, move \mathcal{L}, wlout changing it's direction, along ζ

So S is the plane thru $(0,0,3)$ and $(0,3,0)$ that is parallel to x-axis.
Ex 2. See Demos 12,1,2.
Let ξ be $x^{2}+y^{2}=25$ and \mathcal{L} be z-axis.
First graph \mathcal{B}. Then move \mathcal{L} as we did in Ex. 1

a line 11 to z-axis, move the line along ξ to get 2.

$$
\left\{\left\{\begin{array}{c}
\text { move } \mathcal{L} \\
\text { on iPo. }
\end{array}\right\}\right\}
$$

So \mathcal{L} is a circular cylinder (think of as surface of an infinitely tong soup can - just the tin can, not the soup inside.

Quadric Surfaces

- The general equation of a quadric surface (in variables x, y, and z) is where $A, B, C, D, E, F, G, H, I$, and J are constants,

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G z+H y+I z+J=0
$$

"basic terms"
come from rotation
come from translation

- We will concentrate on 2 types of quadric surfaces: hyperbolic paraboloid (commonly called "saddle") and ellipsoid Ellipsoid
- Basic form $(a, b$, and c are positive)

$$
\begin{aligned}
& \text { asic form }(a, b \text {, and } c \text { are positive) } A \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \overbrace{\substack{\text { multiply thru by }(a b c)^{2}+0 \text { get }}}^{\substack{(b c)^{2} \\
x^{2}} \sqrt{(a c)^{2} y^{2}}+\sqrt{(a b)^{2}} z^{2}-(a b c)^{2}}=0
\end{aligned}
$$

Ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ as center $(0,0,0)$ and semi- axes of length: a (along x-axis), b (alongy-axis), c(along z-axis).

Hyperbolic Paraboloid
ie. "Saddle"
A saddle $\quad(a, b$, and c are positive)

$$
\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c} \longleftarrow c, \text { nit } c^{2}
$$

The parabola $z=\frac{c}{b^{2}} y^{2}$ in the $y z$-plane
" "Saddle point" at the origin.

colors match up with

- Symmetric about the planes $x=0$ and $y=0$.
- Cross section with plane $x=0$ is the parabola $z=\frac{c}{b^{2}} y^{2}$.
- Cross section with plane $y=0$ is the parabola $z=-\frac{c}{a^{2}} x^{2}$.
- cross section with plane $z=c$ is the hyperbola $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$

Rok A saddle with "saddle point" at the origin land is not rotated) has the equation in variables u, v, and w, for some nonzero constants K and L

$$
K u^{2}+L v^{2}=w^{1} \text { with } \quad\left|\frac{k}{k}\right|=-\left|\frac{L}{L}\right|
$$

Problem Describe the surface given by the equation

$$
\begin{equation*}
36 x^{2}+9 y^{2}+4 z^{2}-288 x-90 y+48 z+909=0 \tag{1}
\end{equation*}
$$

- Complete squares in (1) to "get rid of' the x, y, and z terms.
(1)

$$
\begin{aligned}
& \Leftrightarrow 36 x^{2}-288 x+9 y^{2}-90 y+4 z^{2}+48 z=-909 \\
& \Leftrightarrow 36\left(x^{2}-8\right)+9\left(y^{2}-10\right)+4\left(z^{2}+12 z\right)=-909
\end{aligned}
$$

§ Complete square... if you need, sec Ex 4 p 712 -713

$$
\begin{align*}
& \Leftrightarrow 36(x-4)^{2}+9(y-5)^{2}+4(z+6)^{2}=-909+36(4)^{2}+9(5)^{2}+4(6)^{2} \\
& \Leftrightarrow 36(x-4)^{2}+9(y-5)^{2}+4(z+6)^{2}=36 \\
& \Leftrightarrow \frac{36(x-4)^{2}}{36}+\frac{9(y-5)^{2}}{9 \cdot 4}+\frac{4(z+6)^{2}}{4 \cdot 9}=1 \\
& \Leftrightarrow \frac{(x-4)^{2}}{1^{2}}+\frac{(y-5)^{2}}{2^{2}}+\frac{(z-(-6))^{2}}{3^{2}}=1 . \quad(2) \tag{2}
\end{align*}
$$

- An ellipsoid with center $(4,5,-6):=C$ and
- a semi-axis $11 x$-axis and of length 1 with corresp. axis btw $(4-1,5,-6)$ and $(4+1,5,-6)$
- a semi-axis $11 y$-axis and of length 2 with corresp. axis btw $(4,5-2,-6)$ and $(4,5+2,-b)$
- a semi-axis $\|$ z-axis and of length 3 with corresp. axis btw $(4,5,-6-3)$ and $(4,5,-6+3)$

