12.5 Lines and Planes (in 3D)

Line in $3 D$
A line \mathcal{L}

- through the point $R_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- parallel to $\vec{v}_{0}=\langle a, b, c\rangle$, with $\vec{v}_{0} \nexists \overrightarrow{0}^{\prime}$

Let $R=(x, y, z)$ be a point on \mathcal{Z}. Put in the origin O. Note

$$
\overrightarrow{O R}=\overrightarrow{O R}_{0}+t \vec{v}_{0} \quad \text {, where }-\infty<t<\infty
$$

Think of i as time. When $t=0$, we are at R_{0}.
What happens us $t+\infty$. What happens as $t y-\infty$.
Vector Equation of \mathcal{L} :

$$
\begin{equation*}
\vec{R}(t)=\vec{R}_{0}(t)+t v_{0},-\infty<t<\infty . \tag{1}
\end{equation*}
$$

In long form, (1) says

$$
\begin{equation*}
\langle x(t), y(t), z(t)\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle \tag{2}
\end{equation*}
$$

In 12) adding the upper side and equating coordinates, we gat
Parametric Equation of \mathcal{L}

$$
x(t)=x_{0}+a t \text { and } y(t)=y_{0}+b t \text { and } z(t)=z_{0}+c t,-\infty<A<\infty \text {. (3), }
$$

If $a b c \neq 0$, then (3) is equiv. to $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$. can think of (1) as

$$
\begin{aligned}
& \vec{R}(t)=\vec{R}_{0}(t)+t\left\|\vec{v}_{0}\right\| \frac{\vec{v}_{0}}{\left\|\vec{v}_{0}\right\|} \\
& \begin{array}{l}
\text { initial } \\
\text { position }
\end{array} \\
& \text { time speed }
\end{aligned} \underbrace{}_{\text {direction (a unit vector) }}
$$

- The distance d from a point S
to the line \mathcal{L} thru point R_{0} and parallel to \vec{v}_{0}
is

$$
d=\left\|\overrightarrow{R_{0} S} \times \frac{\vec{v}_{0}}{\left\|\vec{v}_{0}\right\|}\right\|
$$

since

$$
\begin{aligned}
& \left.\left\|\overrightarrow{R_{0} S} \times \frac{\vec{v}_{0}}{\left\|\vec{v}_{0}\right\|}\right\|=\left\|\overrightarrow{R_{0} S}\right\|\left\|\frac{\vec{v}_{0}}{\left\|\vec{v}_{0}\right\|}\right\| \right\rvert\, \sin \theta_{\overrightarrow{R_{0} S}, \vec{v}}\| \| \vec{n} \| \\
& \quad=\left\|\overrightarrow{R_{0} S}\right\|\left|\sin \theta \overrightarrow{R_{0} S}, \vec{v}\right|=\left\|\overrightarrow{R_{0} S}\right\| \frac{d}{\left\|\overrightarrow{R_{0} S}\right\|}=d
\end{aligned}
$$

Plane in 3D
PO = plug and chug

- The plane 8
and - containing the point $R_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
and - is normal (1) to the vector $\vec{n}=\langle a, b, c\rangle$, with $\vec{v} \neq \overrightarrow{0}$

$$
\begin{aligned}
& \text { Picture }
\end{aligned} \vec{n}_{n}^{p}
$$

This plane P has

- vector equation

$$
\vec{n} \cdot \overrightarrow{R_{0} R}=0
$$

$$
\overrightarrow{R_{0} P}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle
$$

- Component equation $\quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
(D) \downarrow
- Comp. eq. simplified $a x+b y+c z=d$ where $d=a x_{0}+b y_{0}+c z_{0}$
- The dist anced from a point S to the plane thru the p^{t}. R_{0} and with normal \vec{n} Picture

$$
\begin{aligned}
d & =\left|\operatorname{prog}_{\vec{n}} \stackrel{\rightharpoonup}{P_{0} S}\right| \\
& =|\operatorname{comp} \overrightarrow{\vec{n}}| \\
& =\overrightarrow{R_{0} S} \cdot \frac{\vec{n}}{\|\vec{n}\|}
\end{aligned}
$$

is

$$
d=\left\lvert\, \overrightarrow{R_{0} S} \cdot \frac{\vec{n}}{\|\vec{n}\|}\right.
$$

Intersection of 2 planes

- Setup. Let p_{1} have normal vector \vec{n}_{1}
let P_{2} have normal vector \vec{n}_{2}.
- Question What is the $\frac{\text { intersection of } P_{1} \text { and } P_{2} \text { ? }}{\longrightarrow \text { denoted } P_{1} \cap P_{2}}$
l. If $P_{1}=P_{2}$, then $P_{1} \cap P_{2}=P_{1}$

2. If $\nabla_{1} \neq P_{2}$ but $P_{1} \| P_{2}$, then $P_{1} \cap P_{2}=\varnothing \stackrel{\text { i.e. empty set . }}{=}$ emp re
3. The interesting case. Let $P_{1} \neq P_{2}$ and $P_{1} \nVdash P_{2}$

- pipe cleansers help!

$$
\frac{\vec{n}_{1}}{\left\|\vec{n}_{1}\right\|} \neq \pm \frac{\vec{n}_{2}}{\left\|\vec{n}_{2}\right\|}
$$

Then $P_{1} \cap P_{2}$ is a line \mathcal{L} with $\mathcal{L} \|\left(\vec{n}_{1} \times \vec{n}_{2}\right)$

Def The angle between P_{1} and P_{2} is the acute angle between \vec{n}_{1} and \vec{n}_{2}.
so $b+w .0$ and $\pi / 2$.

