12.5 Lines and Planes (in 3D)
12.5 Lines and Planes (in 3D)
Line L
Line L
Summing
Line L
thru
$$P_{2} = (X_{0}, Y_{0}, Z_{0})$$

in direction of $\vec{v} = \langle a, b, c \rangle \neq 0$
with normal $\vec{n} = \langle a, b, c \rangle \neq 0$
with normal $\vec{n} = \langle a, b, c \rangle \neq 0$
with normal $\vec{n} = \langle a, b, c \rangle \neq 0$
in direction of $\vec{v} = \langle a, b, c \rangle \neq 0$
 \vec{v}
 \vec

Ex 3 The quation of the line & peakled to interaction of planes

$$3\pi + y + z = 5$$
 and $x - 2y + 3z = 1$
 P_1 has normal $\overline{n}_1 =$ P_2 has normal $\overline{n}_2 =$
and & peakled three the point (4,2,1) is , where $-\infty < t < \infty_2$,
 $\overline{R}(t) = < -, -, > + t < -, -, > - >$
 P_2
 P_4
 P_4

Ex 6 Find the distance d(P, P2) btw the 2 planes: 12,5,5 and $P_1: x+y=4$ < has a normal $\vec{n}_1 = \langle -i, -i \rangle \Rightarrow P_1 = P_2$ $P_2: x+y=10$ < has a normal $\vec{n}_2 = \langle -i, -i \rangle$ • An easy to find pt on P_1 is $P_1 = (-, 0, 0)$ An easy to find pt on P_2 is $P_2 = (-, 0, 0)$ 8' SO P1P2 = · Picture time! $P_{2} = P_{1}(4, a, c)$ $P_{2} = P_{2}(10, q, c)$ • $d(B_1, B_2) \xrightarrow{lock} at$ || POd7 -Ex 7 We have done some harder examples, (e.g. 2(P, , P2)) Read and work examples in book many much easier than in class. This Frnich 12.5. Any Questions?