\$12.4 Cross Product
Set-up - Given 2 (nonzero) vectors

$$
\vec{A}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \text { and } \vec{B}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle .
$$

- If needed, translate one of the vectors so that their tails coincide.
- Let
$\theta_{A B}$ be the angle between $\vec{A}$ and $\vec{B}$.
so

$$
0 \leq \Theta_{A B} \leq \pi
$$

- Note $\vec{A} \| \vec{B} \Leftrightarrow \theta_{A B}$ is 0 are $\pi$

$$
\vec{A} \nVdash \vec{B} \Leftrightarrow 0<\theta_{A}<\pi .
$$

- Now assume $\vec{A} \nVdash \vec{B} ;$ so, get $\vec{A} \& \vec{B}$ are contained in a unique plane $P$
- Def
$\vec{n}_{A B}$ is the right-hand-rule unit vector perpendicular (L) to the plane $P_{A B}$.
- Since $\vec{n}_{. A B}$ is a unit vector, $\left\|\vec{n}_{A B}\right\|=1$.
- Since $\vec{n}_{A B} \perp P_{A B}$, we get $\vec{n}_{A B} \perp \vec{A}$ and $\vec{n}_{A B} \perp \vec{B}$
- Right-hand-rule stuff for $\vec{n}_{A B}$. Question: $\vec{n}_{A B}$ VS. $\vec{n}_{B A}$ ?
Place your right hand 1 to $P A B$ and along $\vec{A}$.
Curl your fingers from $\vec{A}$ to $\bar{B}$, going through $\theta_{A B}$.
Your thumb will be pointing in the direction of $\vec{n}_{A B}$.
Def. Cross Product $\underset{\text { vectors }}{\vec{A} \times \vec{B}}=\underbrace{\left[\|\vec{A}\|\|\vec{B}\| \sin \theta_{A B}\right] \vec{n}_{A B}}_{a \text { vector }}$

Recall Def. Cross Product

- Using the definition in (1), we get the following:

Algebraic Properties of the Cross Product
5. $\vec{O} \times \vec{B}=\overrightarrow{0}$
3. $\vec{A} \times \vec{B} \quad=\quad(\vec{B} \times \vec{A})$

1. $(r \vec{A}) \times(s \vec{B})=(r s)(\vec{A} \times \vec{B})$
2. $\vec{A} \times(\vec{B}+\vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})$
3. $(\vec{A}+\vec{B}) \times \vec{C}=(\vec{A} \times \vec{C})+(\vec{B} \times \vec{C})$
4. $\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}$

- Using these algebraic properties, we can show (see book p736) for $\vec{A}=\left\langle x_{A}, y_{A}, z_{A}\right\rangle$ and $\vec{B}=\left\langle x_{B}, y_{B}, z_{B}\right\rangle$

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B}
\end{array}\right| \stackrel{\text { ie. }}{=} \operatorname{det}\left(\left[\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B}
\end{array}\right]\right) \\
& \stackrel{i e .}{=}\left(y_{A} z_{B}-z_{A} y_{B}\right) \vec{\imath}-\left(x_{A} z_{B}-z_{A} x_{B}\right) \vec{\jmath}+\left(x_{A} y_{B}-y_{A} x_{B}\right) \vec{k}
\end{aligned}
$$

A do not overlook minus sign.
Do not have to memorize! Instead, see Handout on: Determinate of a Matrix.

Ex 1. Let $\vec{A}=2 \vec{\imath}-\vec{\jmath}+4 \vec{k}$ and $\vec{B}=\vec{\imath}+5 \vec{\jmath}-3 \vec{k}$. Fill in the blanks (la) $\vec{A} \times \vec{B}=\vec{\imath}+\vec{\jmath}+$ $\qquad$ $\vec{k}$
(ib) the direction of $\vec{A} \times \vec{B}=<$ $\qquad$ , $\qquad$ ,$>$ remember,
direction of $\vec{V}$ means unit vector in the same direction as $\vec{V}$ so want $\frac{\vec{v}}{\| \vec{V} \mid}$
Soln
(la)

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\stackrel{\rightharpoonup}{\imath} & \vec{\jmath} & \vec{b} \\
2 & -1 & 4 \\
1 & 5 & -3
\end{array}\right|
$$



$$
\begin{aligned}
& =\vec{\imath}\left|\begin{array}{cc}
-1 & 4 \\
5 & -3
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
2 & 4 \\
1 & -3
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
2 & -1 \\
1 & 5
\end{array}\right| \\
& =\vec{\imath}((-1)(-3)-(4)(5))-\vec{\jmath}((2)(-3)-(4)(1))+\vec{k}(12)(5)-(-1)(1)) \\
& =\vec{i}(3-20)-\vec{\jmath}(-6-4)+\vec{k}(10+1) \\
& =-17 \vec{\imath}+10 \vec{\jmath}+11 \vec{k}
\end{aligned}
$$

(ib) Want $\begin{aligned} \frac{\vec{A} \times \vec{B}}{\|\cdot \vec{A} \times \vec{B}\|} \cdot\|\vec{A} \times \vec{B}\| & =\sqrt{17^{2}+10^{2}+1^{2}}=\sqrt{289+100+121} \\ & =\sqrt{510}\end{aligned}$

$$
\frac{\vec{A} \times \vec{B}}{\|\vec{A} \times \vec{B}\|} \stackrel{i . e .}{\|\vec{A} \times \vec{B}\|}(\vec{A} \times \vec{B})=\frac{1}{\sqrt{510}}\langle-17,10, \|\rangle=\left\langle\frac{-17}{\sqrt{510}}, \frac{10}{\sqrt{510}}, \frac{11}{\sqrt{510}}\right\rangle
$$

Ex 2 Neat Useful Fact for nonzero vectors $\vec{A}$ and $\vec{B}$.

1. $\vec{A} \cdot \vec{B}=0 \quad \Leftrightarrow$ $\qquad$
2. $\vec{A} \times \vec{B}=\overrightarrow{0} \Leftrightarrow$ $\qquad$
Sol
3. $\vec{A} \cdot \vec{B}=0 \Leftrightarrow\|\vec{A}\|\|\vec{B}\| \cos \theta_{A B}=0 \Leftrightarrow \cos \theta_{A B}=0$ but $0 \leq \theta_{A B} \leq \pi$

$$
\Leftrightarrow \theta=\pi / 2 \Leftrightarrow A \perp B
$$

2. $\vec{A} \vec{x} \vec{B}=\overrightarrow{0} \Leftrightarrow\|\vec{A}\|\|\vec{B}\| \sin \theta_{A B} \vec{n}_{A B}=\overrightarrow{0}$
$\Leftrightarrow\|\|\vec{A}\|\| \vec{B}\left\|\sin \theta_{A B} \vec{n}_{A B}\right\|=\|\overrightarrow{0}\|$
$\Leftrightarrow\|\vec{A}\|\|\vec{B}\|\left|\sin \theta_{A B}\right|\|\vec{n} \overrightarrow{A B}\|=\|\overrightarrow{0}\|$
$\Leftrightarrow\left|\sin \theta_{A B}\right|=0$ (know $0 \leq \theta_{A B} \leq \pi$ )
$\Leftrightarrow \quad \theta_{A B}$ is 0 or $\pi . \Leftrightarrow \vec{A} \| \vec{B}$

Ex 3 Application. Torque is given by a cross product,
and engineering
The cross product arises quite naturally in many situations in physics. For example, if a force $\mathbf{F}$ is applied to a body at a point $P$ (Fig. 18.19), and if $\mathbf{R}$ is the vector from a fixed origin $O$ to $P$, then this force tends to rotate the body about an axis through $O$ and perpendicular to the plane of $\mathbf{R}$ and $\mathbf{F}$. The torque vector $\mathbf{T}$ defined by

$$
\mathbf{T}=\mathbf{R} \times \mathbf{F}
$$

Think of the body as being fixed at 0 but
 the body can still rotate about 0 .

